Subscribe to RSS
DOI: 10.1055/a-1579-7458
Intensivmedizinische Aspekte des Blutzuckerstoffwechsels

Blutzuckerentgleisungen und ihre Folgen sind ein häufiger Befund in der Intensivmedizin. Die Stresshyperglykämie ist dabei ein relevanter Faktor in der Mortalität vor allem nicht entsprechend präkonditionierter Patienten. Die Behandlung von Ketoazidose und hyperosmolarer Entgleisung ist erfahrenen Behandlern vorbehalten. Wesentlich für die Patientensicherheit sind feste Standards in der Therapie dieser kritischen Stoffwechselzustände. Erschwert wird die Blutzuckerkontrolle in der Intensivmedizin durch einflussnehmende Medikation und enterale/parenterale Ernährung.
-
Im intensivmedizinischen Setting ist in der Regel ein Blutzuckerkorridor von 140–180 mg/dl sinnvoll und sicher.
-
Der kritisch kranke Patient zeichnet sich häufig durch eine entgleiste Blutzuckersituation aus, dies ist besonders dann prognostisch bedeutsam, wenn ein Diabetes mellitus nicht vorbekannt ist.
-
Die Bedeutung einflussnehmender Medikation (Katecholamine, Glukokortikoide) sollte in der Therapie entgleister Blutzuckerwerte frühzeitig mitbedacht werden.
-
Die Ketoazidose nimmt in ihrer Häufigkeit zu. Therapeutisch steht die Insulintherapie im Vordergrund.
-
Bei hyperosmolaren Entgleisungen ist die Volumentherapie führend.
-
Die enterale ist der parenteralen Ernährung vorzuziehen. Die Anpassung von Kalorienzufuhr und Insulindosierung ist hierbei ein dynamischer Prozess.
Schlüsselwörter
Intensivmedizin - Ernährung - Diabetes mellitus - Insulinbedarf - Stoffwechselentgleisung - Hyperglykämie - HypoglykämiePublication History
Article published online:
24 May 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Frisch A, Chandra P, Smiley D. et al. Prevalence and clinical outcome of hyperglycemia in the perioperative period in noncardiac surgery. Diabetes Care 2010; 33: 1783-1788
- 2 Finfer S, Chittock DR, Su SY. et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 360: 1283-1297
- 3 Capes SE, Hunt D, Malmberg K. et al. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 2000; 355: 773-778
- 4 Kosiborod M, Rathore SS, Inzucchi SE. et al. Admission glucose and mortality in elderly patients hospitalized with acute myocardial infarction: implications for patients with and without recognized diabetes. Circulation 2005; 111: 3078-3086
- 5 Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995; 332: 1351-1362
- 6 Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycaemia. Lancet 2009; 373: 1798-1807
- 7 Harbuz MS, Lightman SL. Stress and the hypothalamo-pituitary-adrenal axis: acute, chronic and immunological activation. J Endocrinol 1992; 134: 327-339
- 8 Vandewalle J, Libert C. Glucocorticoids in sepsis: to be or not to be. Front Immunol 2020; 11: 1318
- 9 Finfer S, Liu B, Chittock DR. et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med 2012; 367: 1108-1118
- 10 Yamada T, Shojima N, Noma H. et al. Glycemic control, mortality, and hypoglycemia in critically ill patients: a systematic review and network meta-analysis of randomized controlled trials. Intensive Care Med 2017; 43: 1-15
- 11 Krinsley JS, Rule P, Pappy L. et al. The Interaction of Acute and Chronic Glycemia on the Relationship of Hyperglycemia, Hypoglycemia, and Glucose Variability to Mortality in the Critically Ill. Crit Care Med 2020; 48: 1744-1751
- 12 Bohé J, Abidi H, Brunot V. et al. Individualised versus conventional glucose control in critically-ill patients: the CONTROLING study-a randomized clinical trial. Intensive Care Med 2021; 47: 1271-1283
- 13 Nyenwe EA, Kitabchi AE. The evolution of diabetic ketoacidosis: An update of its etiology, pathogenesis and management. Metabolism 2016; 65: 507-521
- 14 Dhatariya KK, Umpierrez GE. Guidelines for management of diabetic ketoacidosis: time to revise?. Lancet Diabetes Endocrinol 2017; 5: 321-323
- 15 Spasovski G, Vanholder R, Allolio B. et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intensive Care Med 2014; 40: 320-331
- 16 Fayfman M, Pasquel FJ, Umpierrez GE. Management of hyperglycemic crises: diabetic ketoacidosis and hyperglycemic hyperosmolar state. Med Clin North Am 2017; 101: 587-606
- 17 Elke G, Hartl WH, Kreymann KG. et al. Clinical nutrition in critical care medicine – guideline of the German Society for Nutritional Medicine (DGEM). Clin Nutr ESPEN 2019; 33: 220-275
- 18 Singer P, Blaser AR, Berger MM. et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 2019; 38: 48-79
- 19 McClave SA, Taylor BE, Martindale RG. et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient. Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 2016; 40: 159-211
- 20 Egi M, Krinsley JS, Maurer P. et al. Pre-morbid glycemic control modifies the interaction between acute hypoglycemia and mortality. Intensive Care Med 2016; 42: 562-571
- 21 Hermanides J, Bosman RJ, Vriesendorp TM. et al. Hypoglycemia is associated with intensive care unit mortality. Crit Care Med 2010; 38: 1430-1434
- 22 Becker CD, Sabang RL, Nogueira Cordeiro MF. et al. Hyperglycemia in Medically Critically Ill Patients: Risk Factors and Clinical Outcomes. Am J Med 2020; 133: e568-e574
- 23 Mundi MS, Nystrom EM, Hurley DL. et al. Management of Parenteral Nutrition in Hospitalized Adult Patients [Formula: see text]. JPEN J Parenter Enteral Nutr 2017; 41: 535-549
- 24 McClave SA, Heyland DK. The physiologic response and associated clinical benefits from provision of early enteral nutrition. Nutr Clin Pract 2009; 24: 305-315
- 25 Fuentes Padilla P, Martínez G, Vernooij RW. et al. Early enteral nutrition (within 48 hours) versus delayed enteral nutrition (after 48 hours) with or without supplemental parenteral nutrition in critically ill adults. Cochrane Database Syst Rev 2019; (10) CD012340
- 26 Rahmel T, Hübner M, Koos B. et al. Impact of carbohydrate-reduced nutrition in septic patients on ICU: study protocol for a prospective randomised controlled trial. BMJ Open 2020; 10: e038532
- 27 Lewis SR, Schofield-Robinson OJ, Alderson P. et al. Enteral versus parenteral nutrition and enteral versus a combination of enteral and parenteral nutrition for adults in the intensive care unit. Cochrane Database Syst Rev 2018; (06) CD012276
- 28 Achamrah N, Oshima T, Genton L. Innovations in energy expenditure assessment. Curr Opin Clin Nutr Metab Care 2018; 21: 321-328
- 29 Pradelli L, Mayer K, Klek S. et al. ω-3 Fatty-Acid Enriched Parenteral Nutrition in Hospitalized Patients: Systematic Review With Meta-Analysis and Trial Sequential Analysis. JPEN J Parenter Enteral Nutr 2020; 44: 44-57
- 30 Hellerman Itzhaki M, Singer P. Advances in medical nutrition therapy: parenteral nutrition. Nutrients 2020; 12: 717
- 31 Via MA, Mechanick JI. Inpatient enteral and parenteral [corrected] nutrition for patients with diabetes. Curr Diab Rep 2011; 11: 99-105
- 32 Mesejo A, Montejo-González JC, Vaquerizo-Alonso C. et al. Diabetes-specific enteral nutrition formula in hyperglycemic, mechanically ventilated, critically ill patients: a prospective, open-label, blind-randomized, multicenter study. Crit Care 2015; 19: 390
- 33 Han YY, Lai SR, Partridge JS. et al. The clinical and economic impact of the use of diabetes-specific enteral formula on ICU patients with type 2 diabetes. Clin Nutr 2017; 36: 1567-1572
- 34 Doola R, Deane AM, Tolcher DM. et al. The effect of a low carbohydrate formula on glycaemia in critically ill enterally-fed adult patients with hyperglycaemia: A blinded randomised feasibility trial. Clin Nutr ESPEN 2019; 31: 80-87