Subscribe to RSS
DOI: 10.1055/a-1638-1947
Neue neurochirurgische Therapieverfahren in der Neonatologie – Möglichkeiten und Voraussetzungen
Die neurochirurgische Behandlung von Erkrankungen des zentralen Nervensystems in der Neonatalperiode stellt besondere Herausforderungen an das interdisziplinäre Team. Hierfür kommt der Neonatologie, der Kinderanästhesie und der Kinderneurochirurgie eine besondere Rolle zu. Das Verständnis der pathophysiologischen Grundlagen und eine entsprechende Expertise der zu behandelnden Pathologie tragen zum erfolgreichen Erreichen des Behandlungsziels bei.
-
Die Therapiealternativen des PHHC umfassen EVD, VAD, VSGS und NEL; das aktive Entfernen von Blutungsbestandteilen scheint im Vergleich zu herkömmlichen Verfahren günstige Effekte auf das Shunt-Management und das neurologische Outcome frühgeborener Patienten zu haben.
-
Insbesondere die Anwendung der NEL bei PHHC hat das Potenzial, die Notwendigkeit einer Shunt-Implantation zu verringern; zudem kann die Shunt-Therapie den weiteren Verlauf mit weniger Komplikationen erleichtern.
-
Die NEL kann im Rahmen der Behandlung des PIHC den Erreger- und Proteingehalt senken und die Entstehung eines MLHC verhindern.
-
Die Shunt-Therapie bei Früh- und Neugeborenen sollte auf eine physiologische Adaptation des Kopfumfanges abzielen, um Über- und Unterdrainage zu vermeiden, dieses kann mithilfe verstellbarer Differentialdruckventile inklusive gravitationsassistierter Einheiten erreicht werden.
-
Patienten mit komplexen Fehlbildungen des zentralen Nervensystems, wie Myelomeningozelen, benötigen eine umfassende interdisziplinäre perinatale Betreuung bei assoziiertem Hydrozephalus, Chiari-II-Malformation sowie orthopädischen und urologischen Fragestellungen. Die pränatale Versorgung dieser Patienten kann zur Verbesserung des Outcomes beitragen.
Schlüsselwörter
Neuroendoskopie - ventrikuloperitonealer Shunt - intraventrikuläre Hämorrhagie - HydrozephalusPublication History
Article published online:
19 August 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Christian EA, Melamed EF, Peck E. et al. Surgical management of hydrocephalus secondary to intraventricular hemorrhage in the preterm infant. J Neurosurg Pediatr 2016; 17: 278-284
- 2 Brouwer AJ, Brouwer MJ, Groenendaal F. et al. European perspective on the diagnosis and treatment of posthaemorrhagic ventricular dilatation. Arch Dis Child Fetal Neonatal Ed 2012; 97: F50-55
- 3 Badhiwala JH, Hong CJ, Nassiri F. et al. Treatment of posthemorrhagic ventricular dilation in preterm infants: a systematic review and meta-analysis of outcomes and complications. J Neurosurg Pediatr 2015; 16: 545-555
- 4 Mohamed M, Mediratta S, Chari A. et al. Post-haemorrhagic hydrocephalus is associated with poorer surgical and neurodevelopmental sequelae than other causes of infant hydrocephalus. Childs Nerv Syst 2021; 37: 3385-3396
- 5 Cherian S, Whitelaw A, Thoresen M. et al. The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol 2004; 14: 305-311
- 6 Ballabh P, de Vries LS. White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat Rev Neurol 2021; 17: 199-214
- 7 Gram M, Sveinsdottir S, Ruscher K. et al. Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflammation 2013; 10: 100
- 8 Whitelaw A, Cherian S, Thoresen M. et al. Posthaemorrhagic ventricular dilatation: new mechanisms and new treatment. Acta Paediatr Suppl 2004; 93: 11-14
- 9 Karimy JK, Zhang J, Kurland DB. et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 2017; 23: 997-1003
- 10 Lam HP, Heilman CB. Ventricular access device versus ventriculosubgaleal shunt in post hemorrhagic hydrocephalus associated with prematurity. J Matern Fetal Neonatal Med 2009; 22: 1097-1101
- 11 Whitelaw A, Jary S, Kmita G. et al. Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 2010; 125: e852-858
- 12 Luyt K, Jary SL, Lea CL. et al. Drainage, irrigation and fibrinolytic therapy (DRIFT) for posthaemorrhagic ventricular dilatation: 10-year follow-up of a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 2020; 105: 466-473
- 13 Schaumann A, Buhrer C, Schulz M. et al. Neuroendoscopic surgery in neonates – indication and results over a 10-year practice. Childs Nerv Syst 2021; 37: 3541-3548
- 14 d'Arcangues C, Schulz M, Buhrer C. et al. Extended Experience with Neuroendoscopic Lavage for Posthemorrhagic Hydrocephalus in Neonates. World Neurosurg 2018; 116: e217-e224
- 15 Schulz M, Buhrer C, Spors B. et al. Endoscopic neurosurgery in preterm and term newborn infants -- a feasibility report. Childs Nerv Syst 2013; 29: 771-779
- 16 Bauer DF, Baird LC, Klimo P. et al. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Treatment of Pediatric Hydrocephalus: Update of the 2014 Guidelines. Neurosurgery 2020; 87: 1071-1075
- 17 Etus V, Kahilogullari G, Karabagli H. et al. Early Endoscopic Ventricular Irrigation for the Treatment of Neonatal Posthemorrhagic Hydrocephalus: A Feasible Treatment Option or Not? A Multicenter Study. Turk Neurosurg 2018; 28: 137-141
- 18 Frassanito P, Serrao F, Gallini F. et al. Ventriculosubgaleal shunt and neuroendoscopic lavage: refining the treatment algorithm of neonatal post-hemorrhagic hydrocephalus. Childs Nerv Syst 2021; 37: 3531-3540
- 19 Tirado-Caballero J, Rivero-Garvia M, Arteaga-Romero F. et al. Neuroendoscopic lavage for the management of posthemorrhagic hydrocephalus in preterm infants: safety, effectivity, and lessons learned. J Neurosurg Pediatr 2020; 1-10
- 20 Behrens P, Tietze A, Walch E. et al. Neurodevelopmental outcome at 2 years after neuroendoscopic lavage in neonates with posthemorrhagic hydrocephalus. J Neurosurg Pediatr 2020; 1-9
- 21 Thomale UW, Auer C, Spennato P. et al. TROPHY registry – status report. Childs Nerv Syst 2021; 37: 3549-3554
- 22 Gaderer C, Schaumann A, Schulz M. et al. Neuroendoscopic lavage for the treatment of CSF infection with hydrocephalus in children. Childs Nerv Syst 2018; 34: 1893-1903
- 23 Thomale UW. Integrated understanding of hydrocephalus - a practical approach for a complex disease. Childs Nerv Syst 2021; 37: 3313-3324
- 24 Gebert AF, Schulz M, Haberl H. et al. Adjustments in gravitational valves for the treatment of childhood hydrocephalus-a retrospective survey. Childs Nerv Syst 2013; 29: 2019-2025
- 25 Gebert AF, Schulz M, Schwarz K. et al. Long-term survival rates of gravity-assisted, adjustable differential pressure valves in infants with hydrocephalus. J Neurosurg Pediatr 2016; 17: 544-551
- 26 Kestle JR, Riva-Cambrin J, Wellons JC. et al. A standardized protocol to reduce cerebrospinal fluid shunt infection: the Hydrocephalus Clinical Research Network Quality Improvement Initiative. J Neurosurg Pediatr 2011; 8: 22-29
- 27 Mallucci CL, Jenkinson MD, Conroy EJ. et al. Antibiotic or silver versus standard ventriculoperitoneal shunts (BASICS): a multicentre, single-blinded, randomised trial and economic evaluation. Lancet 2019; 394: 1530-1539
- 28 Pindrik J, Riva-Cambrin J, Kulkarni AV. et al. Surgical resource utilization after initial treatment of infant hydrocephalus: comparing ETV, early experience of ETV with choroid plexus cauterization, and shunt insertion in the Hydrocephalus Clinical Research Network. J Neurosurg Pediatr 2020; 26: 337-345
- 29 Bassuk AG, Kibar Z. Genetic basis of neural tube defects. Semin Pediatr Neurol 2009; 16: 101-110
- 30 Dhingani DD, Boruah DK, Dutta HK. et al. Ultrasonography and magnetic resonance imaging evaluation of pediatric spinal anomalies. J Pediatr Neurosci 2016; 11: 206-212
- 31 Copp AJ, Adzick NS, Chitty LS. et al. Spina bifida. Nat Rev Dis Primers 2015; 1: 15007
- 32 Thompson DN. Postnatal management and outcome for neural tube defects including spina bifida and encephalocoeles. Prenat Diagn 2009; 29: 412-419
- 33 Riva-Cambrin J, Kestle JR, Holubkov R. et al. Risk factors for shunt malfunction in pediatric hydrocephalus: a multicenter prospective cohort study. J Neurosurg Pediatr 2016; 17: 382-390
- 34 Al-Hakim S, Schaumann A, Schneider J. et al. Experience in shunt management on revision free survival in infants with myelomeningocele. Childs Nerv Syst 2018; 34: 1375-1382
- 35 McLone DG, Dias MS. The Chiari II malformation: cause and impact. Childs Nerv Syst 2003; 19: 540-550
- 36 Meuli M, Moehrlen U. Fetal surgery for myelomeningocele is effective: a critical look at the whys. Pediatr Surg Int 2014; 30: 689-697
- 37 Hutchins GM, Meuli M, Meuli-Simmen C. et al. Acquired spinal cord injury in human fetuses with myelomeningocele. Pediatr Pathol Lab Med 1996; 16: 701-712
- 38 Houtrow AJ, MacPherson C, Jackson-Coty J. et al. Prenatal Repair and Physical Functioning Among Children With Myelomeningocele: A Secondary Analysis of a Randomized Clinical Trial. JAMA Pediatr 2021; 175: e205674
- 39 Adzick NS, Thom EA, Spong CY. et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 2011; 364: 993-1004
- 40 Papanagiotou P, Rohrer T, Roth C. et al. [Cranial birth trauma]. Radiologe 2009; 49: 913-917
- 41 Milani HJ, Araujo JuniorE, Cavalheiro S. et al. Fetal brain tumors: Prenatal diagnosis by ultrasound and magnetic resonance imaging. World J Radiol 2015; 7: 17-21
- 42 Ostrom QT, de Blank PM, Kruchko C. et al. Alex's Lemonade Stand Foundation Infant and Childhood Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007-2011. Neuro Oncol 2015; 16 (Suppl. 10) x1-x36
- 43 Shahab S, Fangusaro J. Neonatal Central Nervous System Tumors. Clin Perinatol 2021; 48: 35-51