Subscribe to RSS
DOI: 10.1055/a-1638-2478
Kinetic Resolution by Lithiation: Highly Enantioselective Synthesis of Substituted Dihydrobenzoxazines and Tetrahydroquinoxalines
This work was supported by the Engineering and Physical Sciences Research Council (EPSRC, grant EP/R024294/1), the University of Sheffield, the Ministry of Higher Education and Scientific Research Libya, the Royal Society (Short Industry Fellowship SIF\R2\202031), and the Medical Research Council (MRC, grant MR/S009280/1).

Abstract
Kinetic resolution provided a highly enantioselective method to access a range of 3-aryl-3,4-dihydro-2H-1,4-benzoxazines using n-butyllithium and the chiral ligand sparteine. The enantioenrichment remained high on removing the tert-butoxycarbonyl (Boc) protecting group. The intermediate organolithium undergoes ring opening to an enamine. The kinetic resolution was extended to give enantiomerically enriched substituted 1,2,3,4-tetrahydroquinoxalines and was applied to the synthesis of an analogue of the antibiotic levofloxacin that was screened for its activity against the human pathogen Streptococcus pneumoniae.
Key words
ring opening - lithiation - kinetic resolution - heterocycles - enantioselectivity - elimination - antibioticsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1638-2478.
- Supporting Information
Publication History
Received: 20 August 2021
Accepted: 06 September 2021
Accepted Manuscript online:
06 September 2021
Article published online:
26 October 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Anderson VR, Perry CM. Drugs 2008; 68: 535
- 2 Higuchi RI, Thompson AW, Chen J.-H, Caferro TR, Cummings ML, Deckhut CP, Adams ME, Tegley CM, Edwards JP, López FJ, Kallel EA, Karanewsky DS, Schrader WT, Marschke KB, Zhi L. Bioorg. Med. Chem. Lett. 2007; 17: 5442
- 3 Koini EN, Papazafiri P, Vassilopoulos A, Koufaki M, Horváth Z, Koncz I, Virág L, Papp GJ, Varró A, Calogeropoulou T. J. Med. Chem. 2009; 52: 2328
- 4a Eary CT, Jones ZS, Groneberg RD, Burgess LE, Mareska DA, Drew MD, Blake JF, Laird ER, Balachari D, O’Sullivan M, Allen A, Marsh V. Bioorg. Med. Chem. Lett. 2007; 17: 2608
- 4b Wang A, Prouty CP, Pelton PD, Yong M, Demarest KT, Murray WV, Kuo G.-H. Bioorg. Med. Chem. Lett. 2010; 20: 1432
- 5a Smist M, Kwiecien H. Curr. Org. Synth. 2014; 11: 676
- 5b Ilas J, Anderluh PS, Dolenc MS, Kikelj D. Tetrahedron 2005; 61: 7325
- 5c Achari B, Mandal SB, Dutta PK, Chowdhury C. Synlett 2004; 2449
- 6 Zumbrägel N, Machui P, Nonnhoff J, Gröger H. J. Org. Chem. 2019; 84: 1440
- 7 Shen H.-C, Wu Y.-F, Zhang Y, Fan L.-F, Han Z.-Y, Gong L.-Z. Angew. Chem. Int. Ed. 2018; 57: 2372
- 8a Korolyova MA, Vakarov SA, Kozhevnikov DN, Gruzdev DA, Levit GL, Krasnov VP. Eur. J. Org. Chem. 2018; 4577
- 8b Vakarov SA, Korolyova MA, Gruzdev DA, Pervova MG, Levit GL, Krasnov VP. Russ. Chem. Bull. 2019; 68: 1257
- 8c Vakarov SA, Gruzdev DA, Chulakov EN, Levit GL, Krasnov VP. Russ. Chem. Bull. 2019; 68: 841
- 9 Saito K, Miyashita H, Akiyama T. Chem. Commun. 2015; 51: 16648
- 10 Cochrane EJ, Leonori D, Hassall LA, Coldham I. Chem. Commun. 2014; 50: 9910
- 11 Carter N, Li X, Reavey L, Meijer AJ. H. M, Coldham I. Chem. Sci. 2018; 9: 1352
- 12 Choi A, El-Tunsi A, Wang Y, Meijer AJ. H. M, Li J, Li X, Proietti Silvestri I, Coldham I. Chem. Eur. J. 2021; 27: 11670
- 13 For a review, see: Kasten K, Seling N, O’Brien P. Org. React. 2019; 100: 255
- 14 Selectivity factor, S = krel = ln[(1 – C)(1 – ee)]/ln[(1 – C)(1 + ee)], where C = conversion and ee = enantiomeric excess; see: Kagan HB, Fiaud JC. Top. Stereochem. 1988; 18: 249
- 15a Ten Brink RE, Merchant KM, McCarthy TJ. WO Patent 03/089438A1, 2003
- 15b Jangili P, Kashanna J, Das B. Tetrahedron Lett. 2013; 54: 3453
- 16a Babudri F, Florio S, Reho A, Trapani G. J. Chem. Soc., Perkin Trans. 1 1984; 1949
- 16b Garrido F, Mann A, Wermuth C.-G. Tetrahedron Lett. 1997; 38: 63
- 16c Lautens M, Fillion E, Sampat M. J. Org. Chem. 1997; 62: 7080
- 16d Lu YJ, Hu B, Prashad M, Kabadi S, Repic O, Blacklock TJ. J. Heterocycl. Chem. 2006; 43: 1125
- 16e Corbet BP, Matlock JV, Mas-Roselló J, Clayden J. C. R. Chim. 2017; 20: 634
- 16f Firth JD, O’Brien P, Ferris L. J. Org. Chem. 2017; 82: 7023
- 17 CCDC 2093628 [(R)-1b], CCDC 2093629 [(R)-1c], and CCDC 2093630 [(R)-4a] contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 18a Bailey WF, Beak P, Kerrick ST, Ma S, Wiberg KB. J. Am. Chem. Soc. 2002; 124: 1889
- 18b Stead D, Carbone G, O’Brien P, Campos KR, Coldham I, Sanderson A. J. Am. Chem. Soc. 2010; 132: 7260
- 18c Lin W, Zhang K.-F, Baudoin O. Nat. Catal. 2019; 2: 882
- 19a Gao K, Yu C.-B, Wang D.-S, Zhou Y.-G. Adv. Synth. Catal. 2012; 354: 483
- 19b Hu J, Wang D, Zheng Z, Hu X. Chin. J. Chem. 2012; 30: 2664
- 19c Fleischer S, Zhou S, Werkmeister S, Junge K, Beller M. Chem. Eur. J. 2013; 19: 4997
- 19d Liu X.-W, Wang C, Yan Y, Wang Y.-Q, Sun J. J. Org. Chem. 2013; 78: 6276
- 19e Qin J, Chen F, He Y.-M, Fan Q.-H. Org. Chem. Front. 2014; 1: 952
- 19f Zhang Y, Zhao R, Bao RL.-Y, Shi L. Eur. J. Org. Chem. 2015; 3344
- 20a McKinney AM, Jackson KR, Salvatore RN, Savrides E.-M, Edattel MJ, Gavin T. J. Heterocycl. Chem. 2005; 42: 1031
- 20b Rueping M, Tato F, Schoepke FR. Chem. Eur. J. 2010; 16: 2688
- 20c Ji Y.-G, Wei K, Liu T, Wu L, Zhang W.-H. Adv. Synth. Catal. 2017; 359: 933
- 21 Fu KP, Lafredo SC, Foleno B, Isaacson DM, Barrett JF, Tobia AJ, Rosenthale ME. Antimicrob. Agents Chemother. 1992; 36: 860
- 22 Yu X, Zhang M, Annamalai T, Bansod P, Narula G, Tse-Dinh Y.-C, Sun D. Eur. J. Med. Chem. 2017; 125: 515
- 23 Schriewer M, Grohe K, Zeiler H.-J, Metzger KG. DE Patent 3543513A1, 1987
- 24a Lister PD, Sanders CC. J. Antimicrob. Chemother. 1999; 43: 79
- 24b Lacy MK, Lu W, Xu X, Tessier PR, Nicolau DP, Quintiliani R, Nightingale CH. Antimicrob. Agents Chemother. 1999; 43: 672
- 24c Zhanel GG, Walters M, Laing N, Hoban DJ. J. Antimicrob. Chemother. 2001; 47: 435
- 24d Lister PD. Diagn. Microbiol. Infect. Dis. 2002; 44: 43
- 24e Garrison MW. J. Antimicrob. Chemother. 2003; 52: 503
- 24f Lanie JA, Ng W.-L, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, Tettelin H, Glass JI, Winkler ME. J. Bacteriol. 2007; 189: 38
- 25 Aldred KJ, Kerns RJ, Osheroff N. Biochemistry 2014; 53: 1565
- 26 Wei S, Feng X, Du H. Org. Biomol. Chem. 2016; 14: 8026
- 27 Rueping M, Antonchick AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 6751
- 28 Figueras J. J. Org. Chem. 1966; 31: 803
- 29 Chen Q.-A, Wang D.-S, Zhou Y.-G, Duan Y, Fan H.-J, Yang Y, Zhang Z. J. Am. Chem. Soc. 2011; 133: 6126
For spectroscopic data for compound 1a, see:
For related ring opening of lithiated intermediates, see:
Representative data for 3a–e: