Synlett, Table of Contents Synlett 2021; 32(19): 1974-1980DOI: 10.1055/a-1642-0598 letter 1,3-Dipolar [3+3] Cycloaddition of 1,4-Benzodiazepinone-Based Nitrones with α-Halohydroxamates for Diastereoselective Synthesis of Novel d-Edge Heterocycle-Fused 1,4-Benzodiazepinones Heng Zhang , Lu-Yu Cai , Zhe Tang , Xiao-Zu Fan , Hui-Hui Wu , Xiao-Fan Bi , Hong-Wu Zhao∗ Recommend Article Abstract Buy Article All articles of this category Abstract Promoted by K2CO3 (2.0 equiv), the 1,3-dipolar [3+3] cycloaddition between 1, 4-benzodiazepinone-based nitrones and α-halohydroxamates processed smoothly under the mild reaction conditions and delivered structurally novel and complex cis- or trans-configured d-edge heterocycle-fused 1,4-benzodiazepinones in up to >99% isolated yield with >20:1 dr. The relative configuration of the title chemical entities was clearly identified with the use of single-crystal X-ray structure analysis. The reaction mechanism was assumed to interpret the diastereoselective production of the obtained cis- or trans-configured d-edge heterocycle-fused 1,4-benzodiazepinones. Key words Key words1,3-dipolar [3+3] cycloaddition - 1,4-benzodiazepinone-based nitrone - α-halohydroxamate - diastereoselectivity - heterocycle-fused 1,4-benzodiazepinone Full Text References References and Notes For selected examples, see: 1a Hata M, Marshall GR. J. Comput.-Aided Mol. Des. 2006; 20: 321 1b Gao K, Wu B, Yu C.-B, Chen Q.-A, Ye Z.-S, Zhou Y.-G. Org. Lett. 2012; 14: 3890 1c Carlier PR, Zhao H, MacQuarrie-Hunter SL, DeGuzman JC, Hsu DC. J. Am. Chem. Soc. 2006; 128: 15215 1d Neukom JD, Aquino AS, Wolfe JP. Org. Lett. 2011; 13: 2196 1e Fier PS, Whittaker AM. Org. Lett. 2017; 19: 1454 For selected examples, see: 2a Moffett RB. J. Org. Chem. 1974; 39: 568 2b Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893 2c De Clercq E. Med. Res. Rev. 1996; 16: 125 2d Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL, Gould NP, Lundell GF, Homnick CF. J. Med. Chem. 1987; 30: 1229 2e Tardibono LP, Miller MJ. Org. Lett. 2009; 11: 1575 2f Araujo AC, Rauter AP, Nicotra F, Airoldi C, Costa B, Cipolla L. J. Med. Chem. 2011; 54: 1266 2g Henderson EA, Alber DG, Baxter RC, Bithell SK, Budworth J, Carter MC, Chubb A, Cockerill GS, Dowdell VC. L, Fraser IJ, Harris RA, Keegan SJ, Kelsey RD, Lumley JA, Stables JN, Weerasekera N, Wilson LJ, Powell KL. J. Med. Chem. 2007; 50: 1685 2h Cappelli A, Anzini M, Vomero S, Menziani MC, De Benedetti PG, Sbacchi M, Clarke GD, Mennuni L. J. Med. Chem. 1996; 39: 860 2i Langlois N, Rojas-Rousseau A, Gaspard C, Werner GH, Darro F, Kiss R. J. Med. Chem. 2001; 44: 3754 For selected examples, see: 3a Neukom JD, Aquino AS, Wolfe JP. Org. Lett. 2011; 13: 2196 3b Borisov RS, Polyakov AI, Medvedeva LA, Khrustalev VN, Guranova NI, Voskressensky LG. Org. Lett. 2010; 12: 3894 3c Ferrini S, Ponticelli F, Taddei M. J. Org. Chem. 2006; 71: 9217 3d Feng J, Zhou M, Lin X, Lu A, Zhang X, Zhao M. Org. Lett. 2019; 21: 6245 3e Fier PS, Whittaker AM. Org. Lett. 2017; 19: 1454 3f Huang Y, Khoury K, Chanas T, Dömling A. Org. Lett. 2012; 14: 5916 3g Li X, Yang L, Zhang X, Zhang-Negrerie D, Du Y, Zhao K. J. Org. Chem. 2014; 79: 955 For selected examples, see: 4a Bilodeau DA, Margison KD, Serhan M, Pezacki JP. Chem. Rev. 2021; 121: 6699 4b Murahashi S.-I, Imada Y. Chem. Rev. 2019; 119: 4684 4c Hamer J, Macaluso A. Chem. Rev. 1964; 64: 473 4d Anderson LL, Kroc MA, Reidl TW, Son J. J. Org. Chem. 2016; 81: 9521 4e Pathipati SR, Singh V, Eriksson L, Selander N. Org. Lett. 2015; 17: 4506 4f Sibi MP, Ma Z, Jasperse CP. J. Am. Chem. Soc. 2005; 127: 5764 4g Sapeta K, Kerr MA. J. Org. Chem. 2007; 72: 8597 4h Hori K, Kodama H, Ohta T, Furukawa I. J. Org. Chem. 1999; 64: 5017 For selected examples, see: 5a Stanley LM, Sibi MP. Chem. Rev. 2008; 108: 2887 5b Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366 5c Spence GG, Taylor EC, Buchardt O. Chem. Rev. 1970; 70: 231 5d Hori K, Kodama H, Ohta T, Furukawa I. J. Org. Chem. 1999; 64: 5017 5e Shindo M, Itoh K, Tsuchiya C, Shishido K. Org. Lett. 2002; 4: 3119 5f Huang Z.-Z, Kang Y.-B, Zhou J, Ye M.-C, Tang Y. Org. Lett. 2004; 6: 1677 5g Mita T, Ohtsuki N, Ikeno T, Yamada T. Org. Lett. 2002; 4: 2457 5h Jakowiecki J, Loska R, Makosza M. J. Org. Chem. 2008; 73: 5436 5i Lu C, Dubrovskiy AV, Larock RC. J. Org. Chem. 2012; 77: 2279 5j Tian Z, Xu J, Liu B, Tan Q, Xu B. Org. Lett. 2018; 20: 2603 For selected examples, see: 6a Haun G, Paneque AN, Almond DW, Austin BE, Moura-Letts G. Org. Lett. 2019; 21: 1388 6b Shintani R, Murakami M, Hayashi T. J. Am. Chem. Soc. 2007; 129: 12356 6c Stevens AC, Palmer C, Pagenkopf BL. Org. Lett. 2011; 13: 1528 6d Hu L, Rombola M, Rawal VH. Org. Lett. 2018; 20: 5384 6e Adly FG, Marichev KO, Jensen JA, Arman H, Doyle MP. Org. Lett. 2019; 21: 40 6f Gothelf KV, Thomsen I, Jørgensen KA. J. Am. Chem. Soc. 1996; 118: 59 6g Qin C, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 14516 6h Viton F, Bernardinelli G, Kündig EP. J. Am. Chem. Soc. 2002; 124: 4968 6i Kano T, Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2005; 127: 11926 6j Suga H, Nakajima T, Itoh K, Kakehi A. Org. Lett. 2005; 7: 1431 For selected examples, see: 7a Tangara S, Aupic C, Kanazawa A, Poisson J.-F, Py S. Org. Lett. 2017; 19: 4842 7b Carmona D, Lamata MP, Viguri F, Rodríguez R, Oro LA, Lahoz FJ, Balana AI, Tejero T, Merino P. J. Am. Chem. Soc. 2005; 127: 13386 7c Valenza S, Cordero FM, Brandi A, Guidi A, Altamura M, Giolitti A, Giuntini F, Pasqui F, Renzetti AR, Maggi CA. J. Org. Chem. 2000; 65: 4003 7d Cardona F, Valenza S, Picasso S, Goti A, Brandi A. J. Org. Chem. 1998; 63: 7311 7e de March P, Escoda M, Figueredo M, Font J, Alvarez-Larena A, Piniella JF. J. Org. Chem. 1997; 62: 7781 7f García Ruano JL, Fraile A, Martín Castro AM, Martín MR. J. Org. Chem. 2005; 70: 8825 7g White JD, Blakemore PR, Korf EA, Yokochi AF. T. Org. Lett. 2001; 3: 413 7h Cardona F, Goti A, Brandi A. Org. Lett. 2003; 5: 1475 7i Ueda T, Inada M, Okamoto I, Morita N, Tamura O. Org. Lett. 2008; 10: 2043 For selected examples, see: 8a Wu S.-Y, Chen W.-L, Ma X.-P, Liang C, Su G.-F, Mo D.-L. Adv. Synth. Catal. 2019; 361: 965 8b Yang H.-B, Shi M. Org. Biomol. Chem. 2012; 10: 8236 8c Maiuolo L, Merino P, Algieri V, Nardi M, Di Gioia ML, Russo B, Delso I, Tallarida MA, De Nino A. RSC Adv. 2017; 7: 48980 8d Lin W, Zhan G, Shi M, Du W, Chen Y. Chin. J. Chem. 2017; 35: 857 8e Mehrdad M, Faraji L, Jadidi K, Eslami P, Sureni H. Monatsh. Chem. 2011; 142: 917 For selected examples, see: 9a Aversa MC, Giannetto P, Ferlazzo A, Romeo G. J. Chem. Soc., Perkin Trans. 1 1982; 2701 9b Freeman JP, Duchamp DJ, Chidester CG, Slomp G, Szmuszkovicz J, Raban M. J. Am. Chem. Soc. 1982; 104: 1380 9c Bourke S, Heaney F. Tetrahedron Lett. 1995; 36: 7527 For selected examples, see: 10a Kwon Y, Choi S, Jang HS, Kim S.-G. Org. Lett. 2020; 22: 1420 10b Acharya A, Anumandla D, Jeffrey CS. J. Am. Chem. Soc. 2015; 137: 14858 10c Acharya A, Montes K, Jeffrey CS. Org. Lett. 2016; 18: 6082 10d Zhang K, Xu X, Zheng J, Yao H, Huang Y, Lin A. Org. Lett. 2017; 19: 2596 10e Zhang K, Yang C, Yao H, Lin A. Org. Lett. 2016; 18: 4618 10f Cheng X, Cao X, Xuan J, Xiao W.-J. Org. Lett. 2018; 20: 52 10g Feng J, Zhao M, Lin X. J. Org. Chem. 2019; 84: 9548 10h Feng J, Zhou M, Lin X, Lu A, Zhang X, Zhao M. Org. Lett. 2019; 21: 6245 10i Xu X, Zhang K, Li P, Yao H, Lin A. Org. Lett. 2018; 20: 1781 11 Typical Procedure and Characterization Data for 3db A mixture of 1,4-benzodiazepinone-based nitrones 1d (1.0 equiv, 0.1 mmol), α-halohydroxamates 2b (2.0 equiv, 0.2 mmol), and K2CO3 (2.0 equiv, 0.2 mmol) in TFE (2.0 mL) was stirred at room temperature for 0.5–1 h until 1,4-benzodiazepinone-based nitrones were consumed completely indicated by TLC plate. The reaction mixture was concentrated under reduced pressure, and the crude products were purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1 to 7:1) to afford product cis- 3db, 94% yield; mp 227.0–227.2 °C. 1H NMR (400 MHz, CDCl3): δ = 4.43 (d, J = 8 Hz, 1 H), 7.67 (d, J = 2 Hz, 1 H), 7.63 (td, J = 7.2, 1.2 Hz, 1 H), 7.59–7.55 (m, 3 H), 7.46–7.42 (m, 1 H), 7.38 (dd, J = 8.4, 2.4 Hz 1 H), 7.35–7.30 (m, 4 H), 7.28–7.26 (m, 4 H), 7.15–7.03 (m, 6 H), 5.76 (s, 1 H), 5.05 (d, J = 8.4 Hz, 1 H), 4.45 (d, J = 15.6 Hz, 1 H), 4.27 (d, J = 2 Hz, 1 H), 3.53 (d, J = 16 Hz, 1 H), 3.47 (d, J = 11.2 Hz, 1 H), 3.03 (d, J = 8.4 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 164.9, 163.9, 140.0, 137.1, 135.9, 134.0, 132.8, 132.5, 132.2, 131.9, 130.7, 130.6, 130.2, 130.1, 129.8, 129.5, 128.9, 128.8, 128.7, 128.5, 128.2, 127.9, 127.5, 126.7, 124.7, 123.7, 90.1, 82.1, 58.9, 53.1 ppm. HRMS (ESI): m/z calcd for C37H29BrClN3O4 [M + H]+: 694.1108; found: 694.1103. 12 CCDC 2046001 (trans-3dg) and CCDC 2106234 (cis-3cd) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www. ccdc.cam.ac.uk/structures For selected examples, see: 13a An Y, Xia H, Wu J. Chem. Commun. 2016; 52: 10415 13b Zhao H.-W, Zhao Y.-D, Liu Y.-Y, Zhao L.-J, Feng N.-N, Pang H.-L, Chen X.-Q, Song X.-Q, Du J. RSC Adv. 2017; 7: 12916 13c Luo Y, Chen C.-H, Zhu F, Mo D.-L. Org. Biomol. Chem. 2020; 18: 8209 13d Lin W, Zhan G, Shi M, Du W, Chen Y. Chin. J. Chem. 2017; 35: 857 Supplementary Material Supplementary Material Supporting Information