Planta Med 2022; 88(14): 1360-1368
DOI: 10.1055/a-1643-5493
Natural Product Chemistry and Analytical Studies
Original Papers

Silicon Resorption from Equisetum arvense Tea – A Randomized, Three-Armed Pilot Study

Aljoscha Waterstradt
1   Centre for Complementary Medicine, Department of Medicine II, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
,
Moritz Winker
2   Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
,
Amy Marisa Zimmermann-Klemd
1   Centre for Complementary Medicine, Department of Medicine II, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
,
Seema Devi
1   Centre for Complementary Medicine, Department of Medicine II, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
,
Ann-Kathrin Lederer
1   Centre for Complementary Medicine, Department of Medicine II, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
,
Roman Huber
1   Centre for Complementary Medicine, Department of Medicine II, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
,
2   Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
› Author Affiliations

Abstract

Equisetum arvense tea (TEA) contains high concentrations of silicon and has been used in folk medicine for the treatment of inflammatory ailments. We examined the resorption of silicon after TEA consumption. Safety and immunological effects were secondary outcomes. A monocentric, randomized, three-armed pilot study was conducted with 12 voluntary, healthy, male subjects. The study is registered in the German register for clinical trials (DRKS-ID: DRKS00016628). After a low silicon diet for 36 hours, 1000 mL TEA1 with approximately 200 000 µg silicon/L, TEA2 with approximately 750 000 µg silicon/L, or Si-low-Water (approximately 10 – 10 000 µg silicon/L as a control) were ingested on three consecutive days. Blood and urine samples were collected at baseline, day 1 examining silicon kinetics, day 3 examining silicon accumulation, and day 8 (safety, immunological parameters). Si-low-Water intake did not change silicon serum (Cmax 294 µg/L) or urine (19 000 µg/24 h) concentrations compared to baseline. Cmax was 2855 µg/L for TEA1 and 2498 µg/L for TEA2; tmax was 60 and 120 min, respectively. Silicon accumulation did not occur. Urine silica within 24 h (E24 h) was higher after TEA2 compared to TEA1 ingestion (142 000 vs. 109 000 µg/24 h). Serum silicon levels at t = 120 min differed significantly after intake of TEA2 or intake of Si-low-Water (p = 0.029). The immunological parameters did not show any significant changes indicating immunosuppressive effects in volunteers. TEA1 was well tolerated, while TEA2 caused diarrhoea in 4 subjects. Our investigations show that intake of TEA1 leads to significant rise in serum silicon concentration.

Supporting Information



Publication History

Received: 05 August 2021

Accepted after revision: 11 September 2021

Article published online:
27 October 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Grotzinger J, Jordan T. Press/Siever – Allgemeine Geologie. 7th ed. Berlin, Heidelberg: Springer Spektrum; 2017: 13
  • 2 Carlisle EM. Silicon. In: Frieden E. ed. Biochemistry of the essential ultratrace Elements. Biochemistry of the Elements. Vol 3. Boston, MA: Springer; 1984: 257-291
  • 3 Nielsen FH. Update on the possible nutritional importance of silicon. J Trace Elm Med Biol 2014; 28: 379-382
  • 4 Voronkov MG. Chapter 27. Silicon in Biology and Medicine. In: Heinzelman RV. ed. Annual Reports in medicinal Chemistry. Institute of Organic Chemistry. Vol 10. Irkutsk, USSR: Elsevier; 1975: 265-273
  • 5 Leeser O. Lehrbuch der Homöopathie: Arzneimittellehre. Mineralische Arzneistoffe. 2nd ed.. ed. Heidelberg: KF Haug; 1968: 498
  • 6 Epstein E. The anomaly of silicon in plant biology. PNAS 1994; 91: 11-17
  • 7 Farooq MA, Dietz KJ. Silicon as versatile player in plant and human biology: Overlooked and poorly understood. Front Plant Sci 2015; 6: 994
  • 8 Schnur E. Deutsche Gesellschaft für Ernährung. Referenzwerte für die Nährstoffzufuhr. 2nd ed. Losebl.-Ausg.. Bonn: Deutsche Gesellschaft für Ernährung; 2015
  • 9 Sergent T, Croizet K, Schneider YJ. In vitro investigation of intestinal transport mechanism of silicon, supplied as orthosilicic acid-vanillin complex. Mol Nutr Food Res 2016; 61: 3-6
  • 10 Gitelman HJ, Alderman F, Perry SJ. Renal handling of silicon in normals and patients with renal insufficiency. Kidney Int 1992; 42: 957-959
  • 11 Reffitt DM, Jugdaohsingh R, Thompson RPH, Powell JJ. Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J Inorg Biochem 1999; 76: 141-147
  • 12 Popplewell JF, King SJ, Day JP, Ackrill P, Fifield LK, Cresswell RG, di Tada ML, Liu K. Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. J Inorg Biochem 1998; 69: 177-180
  • 13 Jugdaohsingh R, Anderson SHC, Tucker KL, Elliott H, Kiel DP, Thompson RPH, Powell JJ. Dietary silicon intake and absorption. Am J Clin Nutr 2002; 75: 887-893
  • 14 Carlisle EM. Essentiality and Function of Silicon. In: Bendz G, Lindqvist I, Runnström-Reio V. eds. Biochemistry of Silicon and related Problems. Nobel Foundation Symposia. Vol 40. Boston, MA: Springer; 1978: 231-253
  • 15 Carlisle EM. Silicon as a trace nutrient. Sci Total Environ 1988; 73: 95-106
  • 16 Martin KR. Silicon: the Health Benefits of a Metalloid. In: Sigel A, Sigel H, Sigel RKO. eds. Interrelations between essential Metal Ions and human Diseases. Dordrecht: Springer Netherlands; 2013: 451-473
  • 17 Holzhüter G, Narayanan K, Gerber T. Structure of silica in Equisetum arvense . Anal Bioanal Chem 2003; 376: 512-517
  • 18 Czygan FC, Wichtl M. Teedrogen und Phytopharmaka: Ein Handbuch für die Praxis auf wissenschaftlicher Grundlage. 4th ed. Stuttgart: Wiss. Verl.-Ges; 2002: 196-199
  • 19 Jänicke C, Grünwald J, Brendler T. Handbuch Phytotherapie: Indikationen, Anwendungen, Wirksamkeit, Präparate. Stuttgart: WBG Wissenschaftliche Verlagsgesellschaft mbH; 2003: 4
  • 20 Wenigmann M. Phytotherapie: Arzneidrogen – Phytopharmaka – Anwendung. München: Elsevier; 2017: 188-189
  • 21 German Commission E. Equiseti herba (Schachtelhalmkraut). Bundesanzeiger Nr 173. 1986. Accessed December 11, 2019 at: https://www.bfarm.de/SharedDocs/Downloads/DE/Arzneimittel/Zulassung/zulassungsarten/besTherap/amPflanz/mono.pdf?__blob=publicationFile&v=3
  • 22 European Medicines Agency [Internet]. European Union herbal monograph on Equisetum arvense L., Equiseti herba. 2016. Accessed December 11, 2019 at: https://www.ema.europa.eu/en/medicines/herbal/equiseti-herba
  • 23 Girke M. Innere Medizin: Grundlagen und therapeutische Konzepte der anthroposophischen Medizin. 1st ed.. ed. Berlin: Salumed; 2010: 746-790
  • 24 Steinborn C, Potterat O, Meyer U, Trittler R, Stadlbauer S, Huber R, Gründemann C. In vitro anti-inflammatory effects of Equisetum arvense are not solely mediated by silica. Planta Med 2018; 84: 519-526
  • 25 Rao JK, Mihaliak K, Kroenke K, Bradley J, Tierney WM, Weinberger M. Use of complementary therapies for arthritis among patients of rheumatologists. Ann Intern Med 1999; 131: 409-416
  • 26 Do Monte FHM, dos Santos jr. JG, Russi M, Lanziotti VMNB, Leal LKAM, Cunha GMA. Antinociceptive and anti-inflammatory properties of the hydroalcoholic extract of stems from Equisetum arvense L. in mice. Pharmacol Res 2004; 49: 239-243
  • 27 Gründemann C, Lengen K, Sauer B, Garcia-Käufer M, Zehl M, Huber R. Equisetum arvense (common horsetail) modulates the function of inflammatory immunocompetent cells. BMC Complement Altern Med 2014; 14: 4-9
  • 28 Meyer U, Staiger K, Seitz A. „Rechnen Sie auf die Kieselsäure“ – Pharmazeutische Gesichtspunkte zu einer möglichen Optimierung der Equisetum-Therapie. J Anthro Med 2012; 65: 112-116
  • 29 Pruksa S, Siripinyanond A, Powell JJ, Jugdaohsingh R. Silicon balance in human volunteers; a pilot study to establish the variance in silicon excretion versus intake. Nutr Metab 2014; 11: 4
  • 30 Powell JJ, McNaughton SA, Jugdaohsingh R, Anderson SHC, Dear J, Khot F, Mowatt L, Gleason KL, Sykes M, Thompson RPH, Bolton-Smith C, Hodson MJ. A provisional database for the silicon content of foods in the United Kingdom. Br J Nutr 2005; 94: 804-812
  • 31 Heitland P, Köster HD. Fast, simple and reliable routine determination of 23 elements in urine by ICP-MS. J Anal At Spectrom 2004; 19: 1552-1558
  • 32 Heitland P, Köster HD. Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP–MS. J Trace Elm Med Biol 2006; 20: 253-262
  • 33 Heitland P, Köster HD. Analytik, Toxikologie und klinische Fallbeispiele nach Exposition mit Metallen. Zbl Arbeitsmed 2014; 64: 386-388
  • 34 Heitland P, Blohm M, Breuer C, Brinkert F, Achilles EG, Pukite I, Köster HD. Application of ICP-MS and HPLC-ICP–MS for diagnosis and therapy of a severe intoxication with hexavalent chromium and inorganic arsenic. J Trace Elm Med Biol 2017; 41: 36-40
  • 35 Heitland P, Köster HD. Human biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J Trace Elm Med Biol 2021; 64: 5
  • 36 Cook N, Hansen AR, Siu LL, Abdul Razak AR. Early phase clinical trials to identify optimal dosing and safety. Mol Oncol 2015; 9: 997-1007
  • 37 Kang D, Schwartz JB, Verotta D. Sample size computations for PK/PD population models. J Pharmacokinet Pharmacodyn 2005; 32: 685-701
  • 38 Evans jr. CH, Ildstad ST. Institute of Medicine (US) Committee on Strategies for Small-Number-Participant Clinical Research Trials. Small clinical trials: Issues and challenges. Washington DC: National Academies Press; 2001