Subscribe to RSS
DOI: 10.1055/a-1650-4266
Enantioselective Palladium-Catalyzed Decarboxylative Dearomative Asymmetric Allylic Alkylation of Benzofurans: Diversity-Oriented Synthesis of Flavaglines
This work was supported by the National Natural Science Foundation of China (NNSFC 21772090) and Young Scholar 1000 Talents Plan of China.

Dedicated to Professor Wen-Jing Xiao on the occasion of Teachers’ Day
Abstract
With the introduction of new Trost-type bisphosphine ligands bearing a chiral cycloalkane framework, the highly efficient and enantioselective palladium-catalyzed decarboxylative dearomative asymmetric allylic alkylation (AAA) of benzofurans was achieved. This enabled a diversity-oriented synthesis (DOS) of previously unreachable flavaglines, which features two diversification stages. A new avenue for developing flavagline-based drugs was thus established.
1 Introduction
2 The Dearomative Asymmetric Allylic Alkylation of Benzofurans
3 Synthesis of Flavaglines
4 Conclusion and Outlook
Key words
palladium catalysis - dearomative asymmetric allylic alkylation (AAA) - total synthesis - flavaglines - diversity-oriented synthesis (DOS) - N-heterocyclic carbene (NHC) catalysis - benzoin condensationPublication History
Received: 09 September 2021
Accepted after revision: 21 September 2021
Accepted Manuscript online:
21 September 2021
Article published online:
08 October 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 1b Weaver JD, Recio AIII, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
- 1c Huo H.-X, Duvall JR, Huang M.-Y, Hong R. Org. Chem. Front. 2014; 1: 303
- 1d Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
- 1e Li G, Huo X, Jiang X, Zhang W. Chem. Soc. Rev. 2020; 49: 2060
- 1f Boiarska Z, Braga T, Silvani A, Passarella D. Eur. J. Org. Chem. 2021; 3214
- 1g Dutta S, Bhattacharya T, Werz DB, Maiti D. Chem 2021; 7: 555
- 2 Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett. 1965; 6: 4387
- 3 Trost BM, Fullerton TJ. J. Am. Chem. Soc. 1973; 95: 292
- 4a Tsuji J. In Handbook of Organopalladium Chemistry for Organic Synthesis . Negishi E. John Wiley & Sons; Hoboken: 2002: 1669
- 4b Dai L.-X, Tu T, You S.-L, Deng W.-P, Hou X.-L. Acc. Chem. Res. 2003; 36: 659
- 4c Trost BM. Tetrahedron 2015; 71: 5708
- 4d Trost BM, Schultz JE. Synthesis 2019; 51: 1
- 5a Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 5b Pritchett BP, Stoltz BM. Nat. Prod. Rep. 2018; 35: 559
- 6 For a review, see: Breinbauer R, Vetter IR, Waldmann H. Angew. Chem. Int. Ed. 2002; 41: 2878
- 7a Koehn FE, Carter GT. Nat. Rev. Drug Discovery 2005; 4: 206
- 7b Lachance H, Wetzel S, Kumar K, Waldmann H. J. Med. Chem. 2012; 55: 5989
- 7c Li JW.-H, Vederas JC. Science 2009; 325: 161
- 7d Cragg GM, Grothaus PG, Newman DJ. Chem. Rev. 2009; 109: 3012
- 7e Shen B. Cell 2015; 163: 1297
- 7f Rodrigues T, Reker D, Schneider P, Schneider G. Nat. Chem. 2016; 8: 531
- 8a Proksch P, Edrada R, Ebel R, Bohnenstengel F, Nugroho B. Curr. Org. Chem. 2001; 5: 923
- 8b Kim S, Salim AA, Swanson SM, Kinghorn AD. Anti-Cancer Agents Med. Chem. 2006; 6: 319
- 9a Thuaud F, Bernard Y, Türkeri G, Dirr R, Aubert G, Cresteil T, Baguet A, Tomasetto C, Svitkin Y, Sonenberg N, Nebigil CG, Désaubry L. J. Med. Chem. 2009; 52: 5176
- 9b Thuaud F, Ribeiro N, Gaiddon C, Cresteil T, Désaubry L. J. Med. Chem. 2011; 54: 411
- 9c Polier G, Neumann J, Thuaud F, Ribeiro N, Gelhaus C, Schmidt H, Giaisi M, Kohler R, Muller WW, Proksch P, Leippe M, Janssen O, Désaubry L, Krammer PH, Li-Weber M. Chem. Biol. 2012; 19: 1093
- 9d Sadlish H, Galicia-Vazquez G, Paris CG, Aust T, Bhullar B, Chang L, Helliwell SB, Hoepfner D, Knapp B, Riedl R, Roggo S, Schuierer S, Studer C, Porco JA, Pelletier J, Movva NR. ACS Chem. Biol. 2013; 8: 1519
- 9e Santagata M, Mendillo L, Tang Y.-c, Subramanian A, Perley CC, Roche SP, Wong B, Narayan R, Kwon H, Koeva M, Amon A, Golub TR, Porco JA. Jr, Whitesell L, Lindquist S. Science 2013; 341: 1238303
- 9f Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, Mavrakis KJ, Jiang M, Roderick JE, Van der Meulen J, Schatz JH, Rodrigo CM, Zhao C, Rondou P, de Stanchina E, Teruya-Feldstein J, Kelliher MA, Speleman F, Porco JA, Pelletier J, Ratsch G, Wendel H.-G. Nature 2014; 513: 65
- 9g Iwasaki S, Iwasaki W, Takahashi M, Sakamoto A, Watanabe C, Shichino Y, Floor SN, Fujiwara K, Mito M, Dodo K, Sodeoka M, Imataka H, Honma T, Fukuzawa K, Ito T, Ingolia NT. Mol. Cell 2019; 73: 738
- 10 For a recent excellent overview of flavagline synthesis, see: Zhao, Q.; Abou-Hamdan, H.; Désaubry, L. Eur. J. Org. Chem. 2016, 5908; and references therein.
- 11 For an overview, see: Basmadjian C, Thuaud F, Ribeiro N, Désaubry LG. Future Med. Chem. 2013; 5: 2185
- 12 Trost BM, Greenspan PD, Yang BV, Saulnier MG. J. Am. Chem. Soc. 1990; 112: 9022
- 13a Gerard B, Sangji S, O’Leary DJ, Porco JA. Jr. J. Am. Chem. Soc. 2006; 128: 7754
- 13b Gerard B, Cencic R, Pelletier J, Porco JA. Jr. Angew. Chem. Int. Ed. 2007; 46: 7831
- 13c Lajkiewicz NJ, Roche SP, Gerard B, Porco JA. Jr. J. Am. Chem. Soc. 2012; 134: 13108
- 13d Wang W, Clay A, Krishnan R, Lajkiewicz NJ, Brown LE, Sivaguru J, Porco JA. Jr. Angew. Chem. Int. Ed. 2017; 56: 14479
- 14a Zhou Z, Tius MA. Angew. Chem. Int. Ed. 2015; 54: 6037
- 14b Zhou Z, Dixon DD, Jolit A, Tius MA. Chem. Eur. J. 2016; 22: 15929
- 15a Roche SP, Cencic R, Pelletier J, Porco JA. Jr. Angew. Chem. Int. Ed. 2010; 49: 6533
- 15b Rodrigo CM, Cencic R, Roche SP, Pelletier J, Porco JA. Jr. J. Med. Chem. 2012; 55: 558
- 15c Lajkiewicz NJ, Cognetta AB, Niphakis MJ, Cravatt BF, Porco JA. Jr. J. Am. Chem. Soc. 2014; 136: 2659
- 15d Zhang WH, Liu SF, Maiga RI, Pelletier J, Brown LE, Wang TT, Porco JA. Jr. J. Am. Chem. Soc. 2019; 141: 1312
- 15e Zhang WH, Chu J, Cyr AM, Yueh H, Brown LE, Wang TT, Pelletier Porco JA. Jr. J. Am. Chem. Soc. 2019; 141: 12891
- 16a Cao M.-Y, Ma B.-J, Lao Z.-Q, Wang H, Wang J, Liu J, Xing K, Huang Y.-H, Gan K.-J, Gao W, Wang H, Hong X, Lu H.-H. J. Am. Chem. Soc. 2020; 142: 12039
- 16b Ernst JT, Thompson PA, Nilewski C, Sprengeler PA, Sperry S, Packard G, Michels T, Xiang A, Tran C, Wegerski CJ, Eam B, Young NP, Fish S, Chen J, Howard H, Staunton J, Molter J, Clarine J, Nevarez A, Chiang GG, Appleman JR, Webster KR, Reich SH. J. Med. Chem. 2020; 63: 5879
- 17a Schreiber SL. Science 2000; 287: 1964
- 17b Schreiber SL. Nature 2009; 457: 153
- 17c Wilson RM, Danishefsky SJ. J. Org. Chem. 2006; 71: 8329
- 17d Charest MG, Lerner CD, Brubaker JD, Siegel DR, Myers AG. Science 2005; 308: 395
- 17e Morton D, Leach S, Cordier C, Warriner S, Nelson A. Angew. Chem. Int. Ed. 2008; 48: 104
- 17f Murphy SK, Zeng M, Herzon SB. Science 2017; 356: 956
- 17g Nicolaou KC, Rhoades D, Kumar SM. J. Am. Chem. Soc. 2018; 140: 8303
- 17h Peters DS, Romesberg FE, Baran PS. J. Am. Chem. Soc. 2018; 140: 2072
- 18a Douglas CB, Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
- 18b Behenna DC, Mohr JT, Sherden NH, Marinescu SC, Harned AM, Tani K, Seto M, Ma S, Novak Z, Krout MR, McFadden RM, Roizen JL, Enquist JA, White DE, Levine SR, Petrova KV, Iwashita A, Virgil SC, Stoltz BM. Chem. Eur. J. 2011; 17: 14199
- 18c Trost BM, Xu J. J. Am. Chem. Soc. 2005; 127: 2846
- 18d Trost BM, Xu J, Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
- 19 Cao M.-Y, Xu Z.-M, Gao W, Liu J, Tan F, Lu H.-H. Tetrahedron 2019; 75: 3282
- 20 Trost BM, Machacek MR, Aponick A. Acc. Chem. Res. 2006; 39: 747 ; and references therein
- 21a Racys DT, Eastoe J, Norrby PO, Grillo I, Rogers SE, Lloyd-Jones GC. Chem. Sci. 2015; 6: 5793
- 21b Butts CP, Filali E, Lloyd-Jones GC, Norrby PO, Sale DA, Schramm Y. J. Am. Chem. Soc. 2009; 131: 9945
- 21c Lloyd-Jones GC, Stephen SC, Fairlamb IJ. S, Martorell A, Dominguez B, Tomlin PM, Murray M, Fernandez JM, Jeffery JC, Riis-Johannessen T, Guerziz T. Pure Appl. Chem. 2004; 76: 589
- 21d Bai DC, Yu FL, Wang WY, Chen D, Li H, Liu QR, Ding CH, Chen B, Hou XL. Nat. Commun. 2015; 7: 1
- 21e Keith JA, Behenna DC, Sherden N, Mohr JT, Ma S, Marinescu SC, Nielsen RJ, Oxgaard J, Stoltz BM, Goddard WA. J. Am. Chem. Soc. 2012; 134: 19050
- 21f Trost BM, Toste FD. J. Am. Chem. Soc. 1999; 121: 4545
- 21g Steinhagen H, Reggelin M, Helmchen G. Angew. Chem., Int. Ed. Engl. 1997; 36: 2108
- 22a Higuchi K, Masuda K, Koseki T, Hatori M, Sakamoto M, Kawasaki T. Heterocycles 2007; 73: 641
- 22b Chen TG, Fang P, Hou XL, Dai LX. Synthesis 2015; 47: 134
- 23a Kim KE, Li JM, Grubbs RH, Stoltz BM. J. Am. Chem. Soc. 2016; 138: 13179
- 23b Wickens ZK, Skakuj K, Morandi B, Grubbs RH. J. Am. Chem. Soc. 2014; 136: 890
- 23c Wickens ZK, Morandi B, Grubbs RH. Angew. Chem. Int. Ed. 2013; 52: 11257
- 24a Li Z, Li X, Cheng J.-P. J. Org. Chem. 2017; 82: 9675
- 24b Ema T, Akihara K, Obayashi R, Sakai T. Adv. Synth. Catal. 2012; 354: 3283 ; and references therein
- 25a Diao T, Stahl SS. J. Am. Chem. Soc. 2011; 133: 14566
- 25b Turlik A, Chen Y, Newhouse TR. Synlett 2016; 27: 331
- 25c Iosub AV, Stahl SS. ACS Catal. 2016; 6: 8201
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews on drug discovery by diversity-oriented synthesis, see:
For selected examples, see:
For recent reviews on carbonyl dehydrogenation, see: