Der Nuklearmediziner 2021; 44(04): 313-325
DOI: 10.1055/a-1652-4899
CME-Fortbildung

Neuroendokrine Tumoren – von der morphologischen zur funktionellen Bildgebung

Neuroendocrine tumors – from morphological to functional imaging
Harun Ilhan
,
Moritz Ludwig Schnitzer
,
Johannes Rübenthaler

Im Rahmen der Primärabklärung von neuroendokrinen Tumoren (NET) kommen neben der Ultraschalldiagnostik die Computertomografie und die Magnetresonanztomografie zum Einsatz. Je nach Verfügbarkeit stellt darüber hinaus die funktionelle Bildgebung mittels Szintigrafie bzw. Single-Photon-Emissionscomputertomografie (SPECT) und Positronenemissionstomografie (PET) eine obligate Untersuchungsmethode für die Abklärung von NET dar.

Abstract

Neuroendocrine tumors (NET) are relatively rare tumor entities arising from neuroendocrine cells primarily located in the stomach, duodenum, and pancreas. Imaging methods for the primary diagnosis of NET are ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI). Furthermore, molecular imaging using single-photon emission computed tomography (SPECT) and positron-emissions-tomography (PET) plays a pivotal role in NET. Somatostatin analogs radiolabeled 68Ga represent the diagnostic reference standard for imaging of the primary tumor site as well as metastases. Novel developments introduced PET-tracers labeled with other radionuclides.

Fazit

Take Home Message

Der transabdominale Ultraschall zeigt insbesondere in der Abklärung hepatischer Metastasen eine hohe Sensitivität, die jedoch sehr untersucherabhängig ist.

Fazit

Take Home Message

Bei NET sollte eine CT-Untersuchung mit Kontrastmittel in Mehrphasen-Technik durchgeführt werden. Die arterielle Phase weist insbesondere für die Detektion hypervaskularisierter Lebermetastasen eine hohe Sensitivität auf. Sofern jedoch ein PET/CT zur Verfügung steht, sollte unter Berücksichtigung aktueller Leitlinienempfehlungen dieses zum Staging verwendet werden.

Fazit

Take Home Message

Das Standardprotokoll der abdominalen MRT sollte bei NET native und KM-T1-Sequenzen, T2-Sequenzen mit und ohne Fettsuppression sowie diffusionsgewichtete Sequenzen (DWI) beinhalten. Diese können neben der Differenzierung des Primärtumors im Falle einer Metastasierung auch zur Beurteilung therapieassoziierter Veränderungen herangezogen werden.

Die MRT sollte als fokussierte Untersuchung für bestimmte Areale (z. B. Leber) durchgeführt werden.

Fazit

Take Home Message

Zu den Limitationen der SSTR-PET/CT zählen falsch-positive Befunde. Diese lassen sich jedoch insbesondere durch die Erfahrung des Untersuchers und Korrelation mit der Morphologie in vielen Fällen kompensieren.

Fazit

Take Home Message

Mittlerweile sind neben den am weitesten verbreiteten und bereits zugelassenen 68Ga-markierten Somatostatin-Analoga auch 18F- und 64Cu-markierte Somatostatin-Analoga im klinischen Einsatz.

Kernaussagen
  • Neuroendokrine Tumoren sind eine relativ seltene Tumorentität, die jedoch eine stetig steigende Inzidenz aufweisen. Dieser Anstieg ist überwiegend auf die moderne Bildgebung zurückzuführen, die eine Diagnostik Neuroendokriner Tumoren auch in früheren Stadien ermöglich.

  • Die Ultraschalldiagnostik stellt bei Neuroendokrinen Tumoren eher eine Untersuchungsmodalität zur gezielten Diagnostik bestimmter Regionen dar (z. B. Endosonografie, Lebersonografie).

  • Die CT- und MRT-Bildgebung zeigen eine ähnliche Sensitivität und Spezifität im Rahmen der Primärdiagnostik und sollten nach Möglichkeit immer unter Verwendung von Kontrastmittel durchgeführt werden. Die MRT-Bildgebung eignet sich insbesondere zur Abklärung hepatischer Metastasen, bei der zusätzlich zur Kontrastmittelgabe die Beurteilung diffusionsgewichteter Sequenzen von großer Bedeutung ist.

  • Ein besonderes Merkmal neuroendokriner Tumoren ist die (Über-)Expression von Somatostatin-Rezeptoren auf der Zelloberfläche, welche die Grundlage für die nuklearmedizinische Bildgebung und Therapie darstellt. Die Rezeptoren dienen mittels diagnostischen und therapeutischen Radionukliden markierten Somatostatin-Analoga als Zielstruktur.

  • Den Referenzstandard für die funktionelle Bildgebung gastro-entero-pankreatischer Neuroendokriner Tumoren stellt die PET-Bildgebung mit überwiegend 68Ga-markierten Somatostatin-Analoga dar. Neure Entwicklungen beinhalten dabei auch mittels 64Cu oder 18F markierte Somatostatin-Analoga, die im Vergleich zum Generatorprodukt 68Ga pharmakokinetische Vorteile aufweisen.

  • Darüber hinaus können auch andere Radiopharmaka wie beispielsweise 18F-FDG, 18F-DOPA oder 123I/131I-MIBG für die Bildgebung und das Therapiemanagement Neuroendokriner Tumoren von großer Bedeutung sein. Diese werden in diesem Beitrag jedoch nicht im Detail beleuchtet.



Publication History

Article published online:
29 November 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Man D, Wu J, Shen Z. et al. Prognosis of patients with neuroendocrine tumor: a SEER database analysis. Cancer Manag Res 2018; 10: 5629-5638
  • 2 Dasari A, Shen C, Halperin D. et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol 2017; 3: 1335-1342
  • 3 Scherubl H, Streller B, Stabenow R. et al. Clinically detected gastroenteropancreatic neuroendocrine tumors are on the rise: epidemiological changes in Germany. World J Gastroenterol 2013; 19: 9012-9019
  • 4 Yao JC, Hassan M, Phan A. et al. One hundred years after „carcinoid“: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008; 26: 3063-3072
  • 5 Scoazec JY, Couvelard A, Reseau T. [Classification of pancreatic neuroendocrine tumours: Changes made in the 2017 WHO classification of tumours of endocrine organs and perspectives for the future]. Ann Pathol 2017; 37: 444-456
  • 6 Pape UF, Berndt U, Muller-Nordhorn J. et al. Prognostic factors of long-term outcome in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer 2008; 15: 1083-1097
  • 7 Pelosi G, Sonzogni A, Harari S. et al. Classification of pulmonary neuroendocrine tumors: new insights. Transl Lung Cancer Res 2017; 6: 513-529
  • 8 Scherubl H, Raue F, Frank-Raue K. [Neuroendocrine tumors: Classification, clinical presentation and imaging]. Radiologe 2019; 59: 952-960
  • 9 Sahani DV, Bonaffini PA, Fernandez-Del Castillo C. et al. Gastroenteropancreatic neuroendocrine tumors: role of imaging in diagnosis and management. Radiology 2013; 266: 38-61
  • 10 Halperin DM, Shen C, Dasari A. et al. Frequency of carcinoid syndrome at neuroendocrine tumour diagnosis: a population-based study. Lancet Oncol 2017; 18: 525-534
  • 11 Ter-Minassian M, Chan JA, Hooshmand SM. et al. Clinical presentation, recurrence, and survival in patients with neuroendocrine tumors: results from a prospective institutional database. Endocr Relat Cancer 2013; 20: 187-196
  • 12 Pinchot SN, Holen K, Sippel RS. et al. Carcinoid tumors. Oncologist 2008; 13: 1255-1269
  • 13 Shah MH, Goldner WS, Benson AB. et al. Neuroendocrine and Adrenal Tumors, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19: 839-868
  • 14 Basuroy R, Srirajaskanthan R, Ramage JK. Neuroendocrine Tumors. Gastroenterol Clin North Am 2016; 45: 487-507
  • 15 Pirasteh A, Lovrec P, Bodei L. Imaging of neuroendocrine tumors: A pictorial review of the clinical value of different imaging modalities. Rev Endocr Metab Disord 2021; 22: 539-552
  • 16 Sundin A. Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol 2012; 26: 803-818
  • 17 Kos-Kudla B, Blicharz-Dorniak J, Strzelczyk J. et al. Diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol 2017; 68: 79-110
  • 18 James PD, Tsolakis AV, Zhang M. et al. Incremental benefit of preoperative EUS for the detection of pancreatic neuroendocrine tumors: a meta-analysis. Gastrointest Endosc 2015; 81: 848-856 e841
  • 19 van Asselt SJ, Brouwers AH, van Dullemen HM. et al. EUS is superior for detection of pancreatic lesions compared with standard imaging in patients with multiple endocrine neoplasia type 1. Gastrointest Endosc 2015; 81: 159-167 e152
  • 20 Poltorak-Szymczak G, Budlewski T, Furmanek MI. et al. Radiological Imaging of Gastro-Entero-Pancreatic Neuroendocrine Tumors. The Review of Current Literature Emphasizing the Diagnostic Value of Chosen Imaging Methods. Front Oncol 2021; 11: 670233
  • 21 Del Prete M, Di Sarno A, Modica R. et al. Role of contrast-enhanced ultrasound to define prognosis and predict response to biotherapy in pancreatic neuroendocrine tumors. J Endocrinol Invest 2017; 40: 1373-1380
  • 22 Piscaglia F, Sansone V, Tovoli F. Contrast-enhanced ultrasound of the liver in colorectal cancer: A useful tool in the right patient. J Hepatol 2021; 74: 272-273
  • 23 Park HJ, Kim HJ, Kim KW. et al. Comparison between neuroendocrine carcinomas and well-differentiated neuroendocrine tumors of the pancreas using dynamic enhanced CT. Eur Radiol 2020; 30: 4772-4782
  • 24 Sundin A, Arnold R, Baudin E. et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Radiological, Nuclear Medicine & Hybrid Imaging. Neuroendocrinology 2017; 105: 212-244
  • 25 Desai H, Borges-Neto S, Wong TZ. Molecular Imaging and Therapy for Neuroendocrine Tumors. Curr Treat Options Oncol 2019; 20: 78
  • 26 Granata V, Fusco R, Setola SV. et al. The multidisciplinary team for gastroenteropancreatic neuroendocrine tumours: the radiologist's challenge. Radiol Oncol 2019; 53: 373-387
  • 27 Ramirez-Renteria C, Ferreira-Hermosillo A, Marrero-Rodriguez D. et al. An Update on Gastroenteropancreatic Neuroendocrine Neoplasms: From Mysteries to Paradigm Shifts. Arch Med Res 2020; 51: 765-776
  • 28 Dromain C, de Baere T, Lumbroso J. et al. Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol 2005; 23: 70-78
  • 29 Dromain C, de Baere T, Baudin E. et al. MR imaging of hepatic metastases caused by neuroendocrine tumors: comparing four techniques. AJR Am J Roentgenol 2003; 180: 121-128
  • 30 d'Assignies G, Fina P, Bruno O. et al. High sensitivity of diffusion-weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2-weighted and dynamic gadolinium-enhanced MR imaging. Radiology 2013; 268: 390-399
  • 31 Liapi E, Geschwind JF, Vossen JA. et al. Functional MRI evaluation of tumor response in patients with neuroendocrine hepatic metastasis treated with transcatheter arterial chemoembolization. AJR Am J Roentgenol 2008; 190: 67-73
  • 32 Ingenerf M, Kiesl S, Karim S. et al. (68)Ga-DOTATATE PET/CT and MRI with diffusion-weighted imaging (DWI) in short- and long-term assessment of tumor response of neuroendocrine liver metastases (NELM) following transarterial radioembolization (TARE). Cancers (Basel) 2021;
  • 33 Baumann T, Rottenburger C, Nicolas G. et al. Gastroenteropancreatic neuroendocrine tumours (GEP-NET) - Imaging and staging. Best Pract Res Clin Endocrinol Metab 2016; 30: 45-57
  • 34 Lee L, Ito T, Jensen RT. Imaging of pancreatic neuroendocrine tumors: recent advances, current status, and controversies. Expert Rev Anticancer Ther 2018; 18: 837-860
  • 35 Barat M, Soyer P, Al Sharhan F. et al. MRI may be able to identify the origin of neuroendocrine tumor liver metastases. Neuroendocrinology 2020;
  • 36 Bozkurt MF, Virgolini I, Balogova S. et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with (68)Ga-DOTA-conjugated somatostatin receptor targeting peptides and (18)F-DOPA. Eur J Nucl Med Mol Imaging 2017; 44: 1588-1601
  • 37 de Herder WW, Hofland LJ, van der Lely AJ. et al. Somatostatin receptors in gastroentero-pancreatic neuroendocrine tumours. Endocr Relat Cancer 2003; 10: 451-458
  • 38 Ilhan H, Lindner S, Todica A. et al. Biodistribution and first clinical results of (18)F-SiFAlin-TATE PET: a novel (18)F-labeled somatostatin analog for imaging of neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2020; 47: 870-880
  • 39 Pauwels E, Cleeren F, Tshibangu T. et al. Al(18)F-NOTA-octreotide: first comparison with (68)Ga-DOTATATE in a neuroendocrine tumour patient. Eur J Nucl Med Mol Imaging 2019; 46: 2398-2399
  • 40 Basu S, Adnan A. Well-differentiated grade 3 neuroendocrine tumours and poorly differentiated grade 3 neuroendocrine carcinomas: will dual tracer PET-computed tomography (68Ga-DOTATATE and FDG) play a pivotal role in differentiation and guiding management strategies?. Nucl Med Commun 2019; 40: 1086-1087
  • 41 Zhang J, Liu Q, Singh A. et al. Prognostic Value of (18)F-FDG PET/CT in a Large Cohort of Patients with Advanced Metastatic Neuroendocrine Neoplasms Treated with Peptide Receptor Radionuclide Therapy. J Nucl Med 2020; 61: 1560-1569
  • 42 Flavell RR, Naeger DM, Aparici CM. et al. Malignancies with Low Fluorodeoxyglucose Uptake at PET/CT: Pitfalls and Prognostic Importance: Resident and Fellow Education Feature. Radiographics 2016; 36: 293-294
  • 43 Sheikhbahaei S, Sadaghiani MS, Rowe SP. et al. Neuroendocrine Tumor Theranostics: An Update and Emerging Applications in Clinical Practice. AJR Am J Roentgenol 2021; 217: 495-506
  • 44 Deppen SA, Blume J, Bobbey AJ. et al. 68Ga-DOTATATE Compared with 111In-DTPA-Octreotide and Conventional Imaging for Pulmonary and Gastroenteropancreatic Neuroendocrine Tumors: A Systematic Review and Meta-Analysis. J Nucl Med 2016; 57: 872-878
  • 45 Froelich MF, Schnitzer ML, Holzgreve A. et al. Cost-Effectiveness Analysis of (68)Ga DOTA-TATE PET/CT, (111)In-Pentetreotide SPECT/CT and CT for Diagnostic Workup of Neuroendocrine Tumors. Diagnostics (Basel) 2021; 11
  • 46 Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics 2015; 35: 500-516
  • 47 Jacobsson H, Larsson P, Jonsson C. et al. Normal uptake of 68Ga-DOTA-TOC by the pancreas uncinate process mimicking malignancy at somatostatin receptor PET. Clin Nucl Med 2012; 37: 362-365
  • 48 Pirasteh A, Riedl C, Mayerhoefer ME. et al. PET/MRI for neuroendocrine tumors: a match made in heaven or just another hype?. Clin Transl Imaging 2019; 7: 405-413
  • 49 Olsen JO, Pozderac RV, Hinkle G. et al. Somatostatin receptor imaging of neuroendocrine tumors with indium-111 pentetreotide (Octreoscan). Semin Nucl Med 1995; 25: 251-261
  • 50 Hennrich U, Benesova M. [(68)Ga]Ga-DOTA-TOC: The First FDA-Approved (68)Ga-Radiopharmaceutical for PET Imaging. Pharmaceuticals (Basel) 2020;
  • 51 Mullard A. 2016 FDA drug approvals. Nat Rev Drug Discov 2017; 16: 73-76
  • 52 Beyer L, Gosewisch A, Lindner S. et al. Dosimetry and optimal scan time of [(18)F]SiTATE-PET/CT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2021;
  • 53 Lottes G, Schober O. [Costs of F-18-FDG PET with a satellite concept: update]. Nuklearmedizin 2000; 39: 72-76
  • 54 Werner RA, Bluemel C, Allen-Auerbach MS. et al. 68Gallium- and 90Yttrium-/177Lutetium: „theranostic twins“ for diagnosis and treatment of NETs. Ann Nucl Med 2015; 29: 1-7