Klin Monbl Augenheilkd 2021; 238(12): 1294-1298
DOI: 10.1055/a-1654-0504
Übersicht

OCT-Angiografie als interdisziplinäres Diagnostikum für Systemerkrankungen

Article in several languages: deutsch | English
Bettina Hohberger
Augenklinik, Universitätsklinikum Erlangen, Deutschland
,
Christian Yahya Mardin
Augenklinik, Universitätsklinikum Erlangen, Deutschland
› Author Affiliations

Zusammenfassung

Die OCT-Angiografie (OCT-A) hat sich zu einer festen Bildgebungsmethode der Retina entwickelt. Sie ermöglicht eine nichtinvasive Darstellung der Mikrozirkulation im Mikrometerbereich bei ophthalmologischen Pathologien sowie bei Systemerkrankungen mit möglicher okulärer Beteiligung. Das Review fasst den aktuellen Stand hierzu zusammen.



Publication History

Received: 28 June 2021

Accepted: 22 September 2021

Article published online:
08 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur/References

  • 1 Huang D, Swanson EA, Lin CP. et al. Optical coherence tomography. Science 1991; 254: 1178-1181
  • 2 Braaf B, Vienola KV, Sheehy CK. et al. Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO. Biomed Opt Express 2013; 4: 51-65
  • 3 Vienola KV, Braaf B, Sheehy CK. et al. Real-time eye motion compensation for OCT imaging with tracking SLO. Biomed Opt Express 2012; 3: 2950-2963
  • 4 Campbell J, Zhang M, Hwang T. et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep 2017; 7: 42201
  • 5 Chao SC, Yang SJ, Chen HC. et al. Early Macular Angiography among Patients with Glaucoma, Ocular Hypertension, and Normal Subjects. J Ophthalmol 2019; 2019: 7419470
  • 6 Moult E, Choi W, Waheed NK. et al. Ultrahigh-speed swept-source OCT angiography in exudative AMD. Ophthalmic Surg Lasers Imaging Retina 2014; 45: 496-505
  • 7 Kim TH, Son T, Lu Y. et al. Comparative Optical Coherence Tomography Angiography of Wild-Type and rd10 Mouse Retinas. Transl Vis Sci Technol 2018; 7: 42
  • 8 Kim Y, Hong HK, Park JR. et al. Oxygen-Induced Retinopathy and Choroidopathy: In Vivo Longitudinal Observation of Vascular Changes Using OCTA. Invest Ophthalmol Vis Sci 2018; 59: 3932-3942
  • 9 Vujosevic S, Muraca A, Alkabes M. et al. Early Microvascular and Neural Changes in Patients with Type 1 and Type 2 Diabetes Mellitus without Clinical Signs of Diabetic Retinopathy. Retina 2019; 39: 435-445
  • 10 Chu S, Nesper PL, Soetikno BT. et al. Projection-Resolved OCT Angiography of Microvascular Changes in Paracentral Acute Middle Maculopathy and Acute Macular Neuroretinopathy. Invest Ophthalmol Vis Sci 2018; 59: 2913-2922
  • 11 Faatz H, Farecki ML, Rothaus K. et al. Optical coherence tomography angiography of types 1 and 2 choroidal neovascularization in age-related macular degeneration during anti-VEGF therapy: evaluation of a new quantitative method. Eye (Lond) 2019; 33: 1466-1471
  • 12 Le D, Alam M, Miao BA. et al. Fully automated geometric feature analysis in optical coherence tomography angiography for objective classification of diabetic retinopathy. Biomed Opt Express 2019; 10: 2493-2503
  • 13 Lommatzsch A. [OCT Angiography]. Klin Monbl Augenheilkd 2020; 237: 95-111
  • 14 Farecki ML, Gutfleisch M, Faatz H. et al. Characteristics of type 1 and 2 CNV in exudative AMD in OCT-Angiography. Graefes Arch Clin Exp Ophthalmol 2017; 255: 913-921
  • 15 Chotard G, Diwo E, Coscas F. et al. Fluorescein and OCT Angiography Features of Takayasu Disease. Ocul Immunol Inflamm 2019; 27: 774-780
  • 16 Ayachit AG, Reddy LU, Joshi S. et al. Epiretinal Neovascularization: A Novel OCT Angiography Finding in Macular Telangiectasia Type 2. Ophthalmol Retina 2019; 3: 516-522
  • 17 Khatri A, Kumar B, Kharel M. et al. Analysis of microaneurysms and capillary density quantified by OCT-angiography and its relation to macular edema and macular ischemia in diabetic maculopathy. Eye (Lond) 2021; 35: 1777-1779
  • 18 de Barros Garcia JMB, Isaac DLC, Avila M. Diabetic retinopathy and OCT angiography: clinical findings and future perspectives. Int J Retina Vitreous 2017; 3: 14
  • 19 Marchese A, Miserocchi E, Modorati G. et al. Widefield OCT Angiography of Idiopathic Retinal Vasculitis, Aneurysms, and Neuroretinitis. Ophthalmol Retina 2017; 1: 567-569
  • 20 Noori J, Shi Y, Yang J. et al. A Novel Method to Detect and Monitor Retinal Vasculitis Using Swept-Source OCT Angiography. Ophthalmol Retina 2021; DOI: 10.1016/j.oret.2021.02.007.
  • 21 Scripsema NK, Garcia PM, Bavier RD. et al. Optical Coherence Tomography Angiography Analysis of Perfused Peripapillary Capillaries in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma. Invest Ophthalmol Vis Sci 2016; 57: OCT611-OCT620
  • 22 Igarashi R, Ochiai S, Sakaue Y. et al. Optical coherence tomography angiography of the peripapillary capillaries in primary open-angle and normal-tension glaucoma. PLoS One 2017; 12: e0184301
  • 23 Manalastas PIC, Zangwill LM, Saunders LJ. et al. Reproducibility of Optical Coherence Tomography Angiography Macular and Optic Nerve Head Vascular Density in Glaucoma and Healthy Eyes. J Glaucoma 2017; 26: 851-859
  • 24 Lommatzsch C, Rothaus K, Koch JM. et al. OCTA vessel density changes in the macular zone in glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol 2018; 256: 1499-1508
  • 25 Rao HL, Pradhan ZS, Suh MH. et al. Optical Coherence Tomography Angiography in Glaucoma. J Glaucoma 2020; 29: 312-321
  • 26 Yarmohammadi A, Zangwill LM, Diniz-Filho A. et al. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Invest Ophthalmol Vis Sci 2016; 57: OCT451-OCT459
  • 27 Hohberger B, Lucio M, Schlick S. et al. OCT-angiography: Regional reduced macula microcirculation in ocular hypertensive and pre-perimetric glaucoma patients. PLoS One 2021; 16: e0246469
  • 28 Nelis P, Kleffner I, Burg MC. et al. OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients. Sci Rep 2018; 8: 8148
  • 29 Kasumovic A, Matoc I, Rebic D. et al. Assessment of Retinal Microangiopathy in Chronic Kidney Disease Patients. Med Arch 2020; 74: 191-194
  • 30 Monteiro-Henriques I, Rocha-Sousa A, Barbosa-Breda J. Optical coherence tomography angiography changes in cardiovascular systemic diseases and risk factors: A Review. Acta Ophthalmol 2021; DOI: 10.1111/aos.14851.
  • 31 Terheyden JH, Wintergerst MWM, Pizarro C. et al. Impaired retinal capillary perfusion assessed by optical coherence tomography angiography in patients with recent systemic hypertensive crisis. Invest Ophthalmol Vis Sci 2019; 60: 4573
  • 32 Hua D, Xu Y, Zeng X. et al. Use of optical coherence tomography angiography for assessment of microvascular changes in the macula and optic nerve head in hypertensive patients without hypertensive retinopathy. Microvasc Res 2020; 129: 103969
  • 33 Donati S, Maresca AM, Cattaneo J. et al. Optical coherence tomography angiography and arterial hypertension: A role in identifying subclinical microvascular damage?. Eur J Ophthalmol 2021; 31: 158-165
  • 34 Stefanutti C, Mesce D, Pacella F. et al. Optical coherence tomography of retinal and choroidal layers in patients with familial hypercholesterolaemia treated with lipoprotein apheresis. Atheroscler Suppl 2019; 40: 49-54
  • 35 Alnawaiseh M, Eckardt F, Mihailovic N. et al. Ocular perfusion in patients with reduced left ventricular ejection fraction measured by optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 2021; DOI: 10.1007/s00417-021-05253-6.
  • 36 Lahme L, Marchiori E, Panuccio G. et al. Changes in retinal flow density measured by optical coherence tomography angiography in patients with carotid artery stenosis after carotid endarterectomy. Sci Rep 2018; 8: 17161
  • 37 Arnould L, Guenancia C, Azemar A. et al. The EYE-MI Pilot Study: A Prospective Acute Coronary Syndrome Cohort Evaluated With Retinal Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 2018; 59: 4299-4306
  • 38 Arnould L, Guenancia C, Gabrielle PH. et al. Influence of cardiac hemodynamic variables on retinal vessel density measurement on optical coherence tomography angiography in patients with myocardial infarction. J Fr Ophtalmol 2020; 43: 216-221
  • 39 Wang J, Jiang J, Zhang Y. et al. Retinal and choroidal vascular changes in coronary heart disease: an optical coherence tomography angiography study. Biomed Opt Express 2019; 10: 1532-1544
  • 40 Yu J, Xiao K, Huang J. et al. Reduced Retinal Vessel Density in Obstructive Sleep Apnea Syndrome Patients: An Optical Coherence Tomography Angiography Study. Invest Ophthalmol Vis Sci 2017; 58: 3506-3512
  • 41 Vadala M, Castellucci M, Guarrasi G. et al. Retinal and choroidal vasculature changes associated with chronic kidney disease. Graefes Arch Clin Exp Ophthalmol 2019; 257: 1687-1698
  • 42 Yeung L, Wu IW, Sun CC. et al. Early retinal microvascular abnormalities in patients with chronic kidney disease. Microcirculation 2019; 26: e12555
  • 43 Dimitrova G, Chihara E, Takahashi H. et al. Quantitative Retinal Optical Coherence Tomography Angiography in Patients With Diabetes Without Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2017; 58: 190-196
  • 44 Veiby N, Simeunovic A, Heier M. et al. Associations between Macular OCT Angiography and Nonproliferative Diabetic Retinopathy in Young Patients with Type 1 Diabetes Mellitus. J Diabetes Res 2020; 2020: 8849116
  • 45 Um T, Seo EJ, Kim YJ. et al. Optical coherence tomography angiography findings of type 1 diabetic patients with diabetic retinopathy, in comparison with type 2 patients. Graefes Arch Clin Exp Ophthalmol 2020; 258: 281-288
  • 46 Oliverio GW, Ceravolo I, Bhatti A. et al. Foveal avascular zone analysis by optical coherence tomography angiography in patients with type 1 and 2 diabetes and without clinical signs of diabetic retinopathy. Int Ophthalmol 2021; 41: 649-658
  • 47 Tsokolas G, Tsaousis KT, Diakonis VF. et al. Optical Coherence Tomography Angiography in Neurodegenerative Diseases: A Review. Eye Brain 2020; 12: 73-87
  • 48 Rogaczewska M, Michalak S, Stopa M. Optical Coherence Tomography Angiography of Peripapillary Vessel Density in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Comparative Study. J Clin Med 2021; 10: 609
  • 49 Kleerekooper I, Houston S, Dubis AM. et al. Optical Coherence Tomography Angiography (OCTA) in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder. Front Neurol 2020; 11: 604049
  • 50 Farci R, Carta A, Cocco E. et al. Optical coherence tomography angiography in multiple sclerosis: A cross-sectional study. PLoS One 2020; 15: e0236090
  • 51 Yoon SP, Grewal DS, Thompson AC. et al. Retinal Microvascular and Neurodegenerative Changes in Alzheimerʼs Disease and Mild Cognitive Impairment Compared with Control Participants. Ophthalmol Retina 2019; 3: 489-499
  • 52 Robbins CB, Thompson AC, Bhullar PK. et al. Characterization of Retinal Microvascular and Choroidal Structural Changes in Parkinson Disease. JAMA Ophthalmol 2021; 139: 182-188
  • 53 Plumb J, McQuaid S, Mirakhur M. et al. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 2002; 12: 154-169
  • 54 Wang X, Jia Y, Spain R. et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol 2014; 98: 1368-1373
  • 55 Spain RI, Liu L, Zhang X. et al. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br J Ophthalmol 2018; 102: 520-524
  • 56 Wang L, Murphy O, Caldito NG. et al. Emerging Applications of Optical Coherence Tomography Angiography (OCTA) in neurological research. Eye Vis (Lond) 2018; 5: 11
  • 57 Kwapong WR, Ye H, Peng C. et al. Retinal Microvascular Impairment in the Early Stages of Parkinsonʼs Disease. Invest Ophthalmol Vis Sci 2018; 59: 4115-4122
  • 58 Kubankova M, Hohberger B, Hoffmanns J. et al. Physical phenotype of blood cells is altered in COVID-19. Biophys J 2021; 120: 2838-2847 DOI: 10.1016/j.bpj.2021.05.025.
  • 59 Wallukat G, Hohberger B, Wenzel K. et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J Transl Autoimmun 2021; 4: 100100
  • 60 Halpert G, Shoenfeld Y. SARS-CoV-2, the autoimmune virus. Autoimmun Rev 2020; 19: 102695
  • 61 Zuo Y, Estes SK, Ali RA. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 2020; 12: eabd3876
  • 62 Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res 2020; 190: 62
  • 63 Landecho MF, Yuste JR, Gandara E. et al. COVID-19 retinal microangiopathy as an in vivo biomarker of systemic vascular disease?. J Intern Med 2021; 289: 116-120
  • 64 Hohberger B, Ganslmayer M, Lucio M. et al. Retinal microcirculation as correlate of a systemic capillary impairment after SARS-CoV-2 infection. Front Med 2021; 8: 676554
  • 65 Savastano MC, Gambini G, Cozzupoli GM. et al. Retinal capillary involvement in early post-COVID-19 patients: a healthy controlled study. Graefes Arch Clin Exp Ophthalmol 2021; 259: 2157-2165 DOI: 10.1007/s00417-020-05070-3.
  • 66 Abrishami M, Emamverdian Z, Shoeibi N. et al. Optical coherence tomography angiography analysis of the retina in patients recovered from COVID-19: a case-control study. Can J Ophthalmol 2021; 56: 24-30