Synlett 2022; 33(01): 66-69
DOI: 10.1055/a-1661-3378
letter

One-Pot Synthesis of 3-(1,2,3,4-Tetrahydroisoquinolin-1-yl)-isoquinolin-1(2H)-ones by DEAD-Promoted Oxidative Ugi–Wittig ­Reaction Starting from Phosphonium Salt Precursors

Long Zhao
,
Mao-Lin Yang
,
Mei Sun
,
Ming-Wu Ding
We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (21572075) and the 111 Project (B17019).


Abstract

A new one-pot synthesis of 3-(1,2,3,4-tetrahydroisoquinolin-1-yl)-isoquinolin-1(2H)-ones by DEAD-promoted oxidative Ugi–­Wittig reaction was developed. The sequential reactions of (2-carboxybenzyl)triphenylphosphonium salts, isocyanides, and N-aryl-1,2,3,4-tetrahydroisoquinolines produced 3-(1,2,3,4-tetrahydroisoquinolin-1-yl)-isoquinolin-1(2H)-ones in moderate to good overall yields in the presence of DEAD and Et3N.

Supporting Information



Publication History

Received: 08 September 2021

Accepted after revision: 04 October 2021

Accepted Manuscript online:
04 October 2021

Article published online:
27 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Zhang X.-R, Wang H.-W, Tang W.-L, Zhang Y, Yang H, Hu D.-X, Ravji A, Marchand C, Kiselev E, Ofori-Atta K, Agama K, Pommier Y, An L.-K. J. Med. Chem. 2018; 61: 9908
  • 2 Ding C, Tian Q, Li J, Jiao M, Song S, Wang Y, Miao Z, Zhang A. J. Med. Chem. 2018; 61: 760
  • 3 Karche NP, Bhonde M, Sinha N, Jana G, Kukreja G, Kurhade SP, Jagdale AR, Tilekar AR, Hajare AK, Jadhav GR, Gupta NR, Limaye R, Khedkar N, Thube BR, Shaikh JS, Irlapati NR, Phukan S, Gole G, Bommakanti A, Khanwalkar H, Pawar Y, Kale R, Kumar R, Gupta R, Kumar VR. P, Wahid S, Francis A, Bhat T, Kamble N, Patil V, Nigade PB, Modi D, Pawar S, Naidu S, Volam H, Pagdala V, Mallurwar S, Goyal H, Bora P, Ahirrao P, Singh M, Kamalakannan P, Naik KR, Kumar P, Powar RG, Shankar RB, Bernstein PR, Gundu J, Nemmani K, Narasimham L, George KS, Sharma S, Bakhle D, Kamboj RK, Palle VP. Bioorg. Med. Chem. 2020; 28: 115819
  • 4 Chan KH, Tse LH, Huang X, Yung HWong Y. H. Biochem. Pharmacol. 2020; 177: 114020
  • 5 Roth J, Madoux F, Hodder P, Roush WR. Bioorg. Med. Chem. Lett. 2008; 18: 2628
  • 6 Van H TM, Cho W.-J. Bioorg. Med. Chem. Lett. 2009; 19: 2551
    • 7a Rachman M, Bajusz D, Hetényi A, Scarpino A, Merő B, Egyed A, Buday L, Barril X, Keserű GM. RSC Med. Chem. 2020; 11: 552
    • 7b Ray P, Wright J, Adam J, Boucharens S, Black D, Brown AR, Epemolu O, Fletcher D, Huggett M, Jones P, Laats S, Lyons A, de Man J, Morphy R, Sherborne B, Sherry L, Straten N, Westwood P, York M. Bioorg. Med. Chem. Lett. 2011; 21: 1084
  • 8 Pettit GR, Ducki S, Eastham SA, Melody N. J. Nat. Prod. 2009; 72: 1279
  • 9 Pettit GR, Meng Y, Herald DL, Graham KA. N, Pettit RK, Doubek DL. J. Nat. Prod. 2003; 66: 1065
  • 10 Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
  • 11 Jaime-Figueroa S, Bond MJ, Vergara JI, Swartzel JC, Crews CM. J. Org. Chem. 2021; 86: 8479
  • 12 Wang A, Xie X, Zhang C, Liu Y. Chem. Commun. 2020; 56: 15581
    • 13a Upadhyay NS, Thorat VH, Sato R, Annamalai P, Chuang S.-C, Cheng C.-H. Green Chem. 2017; 19: 3219
    • 13b Ackermann L, Lygin AV, Hofmann N. Angew. Chem. Int. Ed. 2011; 50: 6379
    • 13c Petrova E, Rasina D, Jirgensons A. Eur. J. Org. Chem. 2017; 1773
    • 13d Hao XQ, Du C, Zhu X, Li PX, Zhang JH, Niu JL, Song MP. Org. Lett. 2016; 18: 3610
    • 13e Peng X, Wang W, Jiang C, Sun D, Xu Z, Tung CH. Org. Lett. 2014; 16: 5354
    • 13f Cera G, Haven T, Ackermann L. Chem. Commun. 2017; 53: 6460
    • 13g Niu B, Liu R, Wei Y, Shi M. Org. Chem. Front. 2018; 5: 1466
  • 14 Xin Y, Xie CS, Pan YY, Han LH, Xie T. Org. Lett. 2010; 12: 4240
  • 15 Zhang M, Zhang H.-J, Ruan W, Wen T.-B. Eur. J. Org. Chem. 2015; 5914
  • 16 Xie C, Dai Z, Niu Y, Ma C. J. Org. Chem. 2018; 83: 2317
  • 17 Hayashida J, Yoshida S. Tetrahedron Lett. 2018; 59: 3876
  • 18 Matouš P, Májek M, Kysilka O, Kuneš J, Maříková J, Růžička A, Pour M, Kočovský P. J. Org. Chem. 2021; 86: 8078
    • 19a Wang L, Sun M, Ding MW. Eur. J. Org. Chem. 2017; 2568
    • 19b Duan Z, Gao Y, Yuan D, Ding MW. Synlett 2015; 26: 2598
    • 20a Chen F, Lai S.-Q, Zhu F.-F, Meng Q, Jiang Y, Yu W, Han B. ACS Catal. 2018; 8: 8925
    • 20b Kong G.-X, Han J.-N, Yang D, Niu J.-L, Song M.-P. Org. Biomol. Chem. 2019; 17: 10167
  • 21 Li T, Zhang C, Tan Y, Pan W, Rao Y. Org. Chem. Front. 2017; 4: 204
    • 22a Rotstein BH, Zaretsky S, Rai V, Yudin AK. Chem. Rev. 2014; 114: 8323
    • 22b Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
    • 23a Xin Y, Xie CS, Pan YY, Han LH, Xie T. Org. Lett. 2010; 12: 4240
    • 23b Ye X, Xie CS, Huang R, Liu JH. Synlett 2012; 23: 409
    • 23c Sun M, Yu YL, Zhao L, Ding MW. Tetrahedron 2021; 77: 132368
  • 24 Wang J, Sun Y, Wang G, Zhen L. Eur. J. Org. Chem. 2017; 6338
  • 25 Ngouansavanh T, Zhu JP. Angew. Chem. Int. Ed. 2007; 46: 5775
    • 26a Chen YY, Feng GF. Org. Biomol. Chem. 2015; 13: 4260
    • 26b Li D, Shen X, Lei J. J. Org. Chem. 2020; 85: 2466
    • 26c Li D, Lei J. Tetrahedron Lett. 2020; 61: 152345
    • 27a Vetter AC, Gilheany DG, Nikitin K. Org. Lett. 2021; 23: 1457
    • 27b Devlin R, Jones DJ, McGlacken GP. Org. Lett. 2020; 22: 5223
    • 28a Vagh SS, Hou B.-J, Edukondalu A, Wang P.-C, Lin W. Org. Lett. 2021; 23: 842
    • 28b Li M, Zhou W. Synlett 2021; 31: 2035
    • 28c Chen T, Ding Z, Guan Y, Zhang R, Yao J, Chen Z. Chem. Commun. 2021; 57: 2665
    • 28d Hoffman G, Walkey MC, Gräsvik J, Bacanu GR, Alom S, Bloodworth S, Light ME, Levitt MH, Whitby RJ. Angew. Chem. Int. Ed. 2021; 60: 8960
    • 28e Sun M, Wan Q, Ding MW. Tetrahedron 2019; 75: 3441
    • 28f Wang L, Ren ZL, Ding MW. J. Org. Chem. 2015; 80: 641
  • 29 Chamorro E, Duque-Noreña M, Gutierrez-Sánchez N, Rincón E, Domingo LR. J. Org. Chem. 2020; 85: 6675
    • 30a Sun M, Zhao L, Ding MW. J. Org. Chem. 2019; 84: 14313
    • 30b Sun M, Zhao L, Yu YL, Ding MW. Synthesis 2020; 53: 1365
  • 31 Preparation of 3-(1,2,3,4-Tetrahydroisoquinolin-1-yl)-isoquinolin-1(2H)-ones 5: General ProcedureTo a mixture of N-aryl-1,2,3,4-tetrahydroisoquinoline 3 (1 mmol), isocyanide 2 (1 mmol), phosphonium salt 1 (1 mmol) in anhydrous CH2Cl2 (3 mL) was added dropwise of a solution of DEAD (0.191 g, 1.1 mmol) in anhydrous CH2Cl2 (2 mL) at room temperature. The resulting mixture was stirred at room temperature for 24 h, and then the solvent was removed under reduced pressure. Et3N (0.202 g, 2 mmol) with toluene (5 mL) was added to the reaction system, and the reaction mixture was stirred at 110 °C for 2 h. The solvent was evaporated under reduced pressure, and the crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1 to 20:1, v/v) to give 5. Compound 5a: light yellow solid (yield 0.426 g, 82%), mp 272–273 (C. 1H NMR (600 MHz, CDCl3): δ = 8.12 (d, J = 7.2 Hz, 1 H, ArH), 7.62–7.10 (m, 15 H, ArH), 6.93 (t, J = 6.6 Hz, 1 H, ArH), 6.64 (s, 1 H, =CH), 6.23 (d, J = 14.4 Hz, 1 H, NCH2 a), 5.82 (s, 1 H, NCH), 5.22 (d, J = 13.8 Hz, 1 H, NCH2 b), 3.72–3.49 (m, 2 H, NCH2), 2.91–2.50 (m, 2 H, CH2), 2.36 (s, 3 H, CH3) ppm. 13C NMR (150 MHz, CDCl3) δ = 162.6, 148.1, 145.2, 142.9, 135.8, 135.2, 134.5, 132.9, 132.3, 129.7, 129.6, 129.3, 128.7, 128.1, 127.7, 127.2, 126.4, 126.3, 124.2, 120.9, 118.0, 111.2, 62.0, 57.3, 42.5, 24.1, 21.6 ppm. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C32H28N2O3SNa: 543.1713; found: 543.1734.