Transfusionsmedizin 2022; 12(01): 26-36
DOI: 10.1055/a-1669-3918
Originalarbeit

Novelle QLL 2020 – welche Auswirkungen haben die neu empfohlenen Hämoglobin-Transfusionstrigger auf die klinische Versorgung?

Eine retrospektive Analyse von Daten eines universitären MaximalversorgersQLL 2020 Amendment – What is the Impact of the Newly Recommended Hemoglobin Transfusion Triggers on Clinical Care?A Retrospective Analysis of Data from a University-based Maximum Care Provider
David Kotzerke*
1   Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universitätsklinikum Leipzig, Leipzig, Deutschland
2   Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Leipzig, Leipzig, Deutschland
,
Maria Walter Costa*
1   Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universitätsklinikum Leipzig, Leipzig, Deutschland
,
Jenny Voigt
1   Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universitätsklinikum Leipzig, Leipzig, Deutschland
,
Alisa Kleinhempel
3   Institut für Transfusionsmedizin, Universitätsklinikum Leipzig, Leipzig, Deutschland
,
Maria Schmidt
1   Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universitätsklinikum Leipzig, Leipzig, Deutschland
,
Tim Söhnlein
3   Institut für Transfusionsmedizin, Universitätsklinikum Leipzig, Leipzig, Deutschland
,
Thorsten Kaiser**
1   Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universitätsklinikum Leipzig, Leipzig, Deutschland
,
Reinhard Henschler**
3   Institut für Transfusionsmedizin, Universitätsklinikum Leipzig, Leipzig, Deutschland
› Author Affiliations

Zusammenfassung

In der Gesamtnovelle der Querschnittsleitlinie (QLL) Hämotherapie der Bundesärztekammer (BÄK) 2020 wurde der Hämoglobin-Transfusionstrigger (Hb-Transfusionstrigger) bei akutem Blutverlust ohne zusätzliche Risikofaktoren aufgrund einer Neubewertung der internationalen Evidenz von 3,7 mmol/l (6 g/dl) auf 4,3 mmol/l (7 g/dl) angepasst. Ziel der vorliegenden Studie ist die retrospektive Analyse des Transfusionsverhaltens von EK bezüglich der Maßgaben der QLL. Zu diesem Zweck analysierten wir individuelle Prä- und Posttransfusions-Hb-Werte von Erythrozytenkonzentraten (EK), die im 4. Quartal 2019 (4946 EKs, 129 560 Hb-Werte) und 2020 (5502 EKs, 134 404 Hb-Werte) am Universitätsklinikum Leipzig (UKL) transfundiert wurden. Der mediane Hb-Wert vor der Transfusion betrug 4,3 mmol/l (7 g/dl) (680 medizinische Fälle, die 2724 EK in 1801 Transfusionen im Jahr 2019 erhielten). Von allen Transfusionen im Jahr 2019 zeigten 899 (49,9%) Transfusionen Hb-Werte < 4,3 mmol/l (7 g/dl) vor der Transfusion, während 152 (8,4%) Hb-Werte < 3,7 mmol/l (6 g/dl) aufwiesen. 2020 wurden jeweils vergleichbare Ergebnisse ermittelt. Wir zeigen, dass der mediane Hb-Anstieg nach der Transfusion eines EK 0,6 mmol/l (1 g/dl) betrug. 34,7% aller Transfusionen erreichten den erwarteten Anstieg von 0,6 mmol/l (1 g/dl) pro EK. Der absolute Anstieg nahm bei Transfusionen mit mehreren EK im Vergleich zu Transfusionen mit einem EK nicht linear zu. Der Grad der Hb-Erhöhung korrelierte invers mit dem Hb-Wert vor Transfusion. Der Hb-Wert nach der Transfusion wurde bei 96,3% der Fälle innerhalb von 24 Stunden nach Hämotherapie kontrolliert. Zusammenfassend spiegelt das Transfusionsverhalten generell die Empfehlungen der Leitlinie. Um ein optimiertes, individualisiertes und dennoch restriktives Transfusionsverhalten bei EK zu erreichen, schlagen wir die Implementierung eines klinischen Entscheidungsunterstützungssystems (CDSS) bei Verschreibung jeder einzelnen EK-Transfusion vor, welches Ärzte bei der Einhaltung der Transfusionsleitlinie unterstützt und über Abweichungen informiert.

Abstract

In 2020 the German Medical Association (Bundesärztekammer, BÄK) adapted the cross-sectional guidelines for hemotherapy due to a reassessment of international evidence changing the general hemoglobin (Hb) transfusion trigger of acute blood loss from 3.7 mmol/L (6 g/dL) to 4.3 mmol/L (7 g/dL). The aim of this study is to evaluate the transfusion practice regarding adherence to current cross-sectional hemotherapy guidelines. For this purpose, we analyzed individual pre- and post-transfusion Hb thresholds of red cell concentrates (RCC) transfused in the fourth quarter of 2019 (4946 RCC transfusions, 129 560 Hb values) and 2020 (5502 RCC transfusions, 134 404 Hb values) at the University of Leipzig Medical Center (ULMC). The median pre-transfusion Hb value was 4.3 mmol/L (7 g/dL) (680 medical cases receiving 2724 RCCs in 1801 transfusions in 2019). Among all transfusions in 2019, 899 (49.9%) had a pre-transfusion Hb value < 4.3 mmol/L (7 g/dL), whereas 152 (8.4%) had an Hb value < 3.7 mmol/L (6 g/dL). Similar results were obtained for 2020. We show that median post-transfusion increase in Hb was 0.6 mmol/L (1 g/dL). 34.7% of all transfusions resulted in the expected average increase of 0.558 mmol/L (0.9 g/dL) Hb per RCC or higher. The absolute increase was higher in case of transfusions of multiple RCCs but did not increase linearly compared to transfusions with one RCC. Our results indicate that the Hb increases inversely correlated with the pre-transfusion Hb. Post-transfusion Hb was controlled within 24 h after hemotherapy in 96.3% of transfusions. In conclusion, we found that overall, the transfusion procedures reflected the guidelineʼs recommendations. To achieve an optimized, individualized yet restrictive RCC transfusion behavior, we propose the implementation of a clinical decision support system (CDSS) supporting physicians to follow the transfusion guideline and informing about deviations.

* geteilte Erstautorenschaft


** geteilte Senior-Autorenschaft


Supporting Information



Publication History

Article published online:
15 February 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 DGAI, AWMF. S3 Leitlinie Präoperative Anämie. S3 Diagnostik und Therapie der Präoperativen Anämie Leitlinie (Langversion). AWMF 2018; Registernummer 001–0024. Im Internet (Stand: 12.10.2021): https://www.awmf.org/uploads/tx_szleitlinien/001-024l_S3_Praeoperative-Anaemie_2018-04-verlaengert.pdf
  • 2 Kassebaum NJ, Arora M, Barber RM. et al. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study. Lancet 2016; 388: 1603-1658
  • 3 Kulier A, Levin J, Moser R. et al. Impact of preoperative anemia on outcome in patients undergoing coronary artery bypass graft surgery. Circulation 2007; 116: 471-479
  • 4 Muñoz M, Gómez-Ramírez S, Campos A. et al. Pre-operative anaemia: prevalence, consequences and approaches to management. Blood Transf 2015; 13: 370-379
  • 5 Musallam KM, Tamim HM, Richards T. et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet 2011; 378: 1396-1407
  • 6 Schoenes B, Schrezenmeier H, Welte M. Rationale Therapie mit Erythrozytenkonzentraten – Update 2020. Transfusionsmedizin 2021; 11: 39-54
  • 7 Beattie WS, Karkouti K, Wijeysundera DN. et al. Risk Associated with Preoperative Anemia in Noncardiac Surgery. A Single-center Cohort Study. Anesthesiology 2009; 110: 574-581
  • 8 Bundesärztekammer. Neufassung der „Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen – Rili-BÄK“. Dtsch Arztebl 2014; 111: 1583-1618
  • 9 Bundesärztekammer. Querschnitts-Leitlinien (BÄK) zur Therapie mit Blutkomponenten und Plasmaderivaten – Gesamtnovelle 2020 (21.08.2020). Im Internet (Stand: 12.10.2021): https://www.bundesaerztekammer.de/fileadmin/user_upload/downloads/pdf-Ordner/MuE/Querschnitts-Leitlinien_BAEK_zur_Therapie_mit_Blutkomponenten_und_Plasmaderivaten-Gesamtnovelle_2020.pdf
  • 10 Zeiler T, Müller MM. Erythrozytenkonzentrate. Kommentar zu den Querschnitts-Leitlinien zur Therapie mit Blutkomponenten und Plasmaderivaten – Gesamtnovelle 2020. Hämotherapie 2021; 36: 4-12
  • 11 Kranenburg FJ, Le Cessie S, Caram-Deelder C. et al. Determinants of transfusion decisions in the ICU: haemoglobin concentration, what else? – a retrospective cohort study. Vox Sang 2019; 114: 816-825
  • 12 Müller MM, Geisen C, Zacharowski K. et al. Transfusion of Packed Red Cells: Indications, Triggers and Adverse Events. Dtsch Arztebl Int 2015; 112: 507-518
  • 13 Carson JL, Stanworth SJ, Roubinian N. et al. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Sys Rev 2016; (10) CD002042
  • 14 Greinacher A, Fendrich K, Hoffmann W. Demographic Changes: The Impact for Safe Blood Supply. Transf Med Hemother 2010; 37: 141-148
  • 15 Schönborn L, Weitmann K, Greger N. et al. Longitudinal Changes in the Blood Supply and Demand in North-East-Germany 2005–2015. Transfus Med Hemother 2017; 44: 224-231
  • 16 Guidi GC, Poli G, Bassi A. et al. Development and implementation of an automatic system for verification, validation and delivery of laboratory test results. Clin Chem Lab Med 2009; 47: 1355-1360
  • 17 Plebani M. Exploring the iceberg of errors in laboratory medicine. Clin Chim Acta 2009; 404: 16-23
  • 18 Plebani M, Aita A, Padoan A. Decision Support and Patient Safety. Clin Lab Med 2019; 39: 231-244
  • 19 Söhnlein T, Schlißke S, Henschler R. Red Cell Transfusion Quality in a 1400-Bed University Hospital. ePoster-Session 7 DGTI 2020; PS: 9-2. Im Internet (Stand: 12.10.2021): https://www.karger.com/Article/Pdf/510538
  • 20 Lier H, Gathof B. Massivtransfusion – logistische und therapeutische Aspekte. Hämotherapie 2017; 29: 4-8
  • 21 Carson JL, Brooks MM, Abbott JD. et al. Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease. Am Heart J 2013; 165: 964-971.e1
  • 22 Carson JL, Stanworth SJ, Alexander JH. et al. Clinical trials evaluating red blood cell transfusion thresholds: An updated systematic review and with additional focus on patients with cardiovascular disease. Am Heart J 2018; 200: 96-101
  • 23 Cooper HA, Rao SV, Greenberg MD. et al. Conservative versus liberal red cell transfusion in acute myocardial infarction (the CRIT Randomized Pilot Study). Am J Cardiol 2011; 108: 1108-1111
  • 24 Estcourt LJ, Malouf R, Trivella M. et al. Restrictive versus liberal red blood cell transfusion strategies for people with haematological malignancies treated with intensive chemotherapy or radiotherapy, or both, with or without haematopoietic stem cell support. Cochrane Database Sys Rev 2017; (01) CD011305
  • 25 Gu WJ, Gu XP, Wu XD. et al. Restrictive Versus Liberal Strategy for Red Blood-Cell Transfusion: A Systematic Review and Meta-Analysis in Orthopaedic Patients. J Bone Joint Surg Am 2018; 100: 686-695
  • 26 Hoeks MPA, Kranenburg FJ, Middelburg RA. et al. Impact of red blood cell transfusion strategies in haemato-oncological patients: a systematic review and meta-analysis. Br J Haematol 2017; 178: 137-151
  • 27 Holst LB, Haase N, Wetterslev J. et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med 2014; 371: 1381-1391
  • 28 Holst LB, Petersen MW, Haase N. et al. Restrictive versus liberal transfusion strategy for red blood cell transfusion: systematic review of randomised trials with meta-analysis and trial sequential analysis. BMJ 2015; 350: h1354
  • 29 Simon GI, Craswell A, Thom O. et al. Outcomes of restrictive versus liberal transfusion strategies in older adults from nine randomised controlled trials: a systematic review and meta-analysis. Lancet Haematol 2017; 4: e465-e474
  • 30 Wiesen AR, Hospenthal D, Byrd JC. et al. Equilibration of Hemoglobin Concentration after Transfusion in Medical Inpatients not actively Bleeding. Ann Intern Med 1994; 121: 278-280
  • 31 DʼAlessandro A, Fu X, Kanias T. et al. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica 2021; 106: 1290-1302
  • 32 Heddle NM, Cook RJ, Arnold DM. et al. Effect of Short-Term vs. Long-Term Blood Storage on Mortality after Transfusion. N Engl J Med 2016; 375: 1937-1945
  • 33 Roussel C, Morel A, Dussiot M. et al. Rapid clearance of storage-induced microerythrocytes alters transfusion recovery. Blood 2021; 137: 2285-2298
  • 34 Roubinian NH, Plimier C, Woo JP. et al. Effect of donor, component, and recipient characteristics on hemoglobin increments following red blood cell transfusion. Blood 2019; 134: 1003-1013
  • 35 Spitalnik SL. A rose is a rose is a rose, or not. Blood 2019; 134: 995-996
  • 36 Meybohm P, Richards T, Isbister J. et al. Patient Blood Management Bundles to Facilitate Implementation. Transfus Med Rev 2017; 31: 62-71
  • 37 Mueller MM, van Remoortel H, Meybohm P. et al. Patient Blood Management: Recommendations From the 2018 Frankfurt Consensus Conference. JAMA 2019; 321: 983-997
  • 38 Munting KE, Klein AA. Optimisation of pre-operative anaemia in patients before elective major surgery – why, who, when and how?. Anaesthesia 2019; 74 (Suppl. 01) 49-57
  • 39 Sixty-third World Health Assembly. The World Health Assembly Resolution on availability, safety and quality of blood products (WHA63.12) (21.05.2010). Im Internet (Stand: 12.10.2021): https://apps.who.int/gb/ebwha/pdf_files/WHA63/A63_R12-en.pdf
  • 40 Goodnough LT. Blood management: transfusion medicine comes of age. Lancet 2013; 381: 1791-1792
  • 41 Barbieri C, Molina M, Ponce P. et al. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients. Kidney Int 2016; 90: 422-429
  • 42 Kassakian SZ, Yackel TR, Deloughery T. et al. Clinical Decision Support Reduces Overuse of Red Blood Cell Transfusions: Interrupted Time Series Analysis. Am J Med 2016; 129: 636.e13-636.e20
  • 43 Mainous AG, Carek PJ, Lynch K. et al. Effectiveness of Clinical Decision Support Based Intervention in the Improvement of Care for Adult Sickle Cell Disease Patients in Primary Care. J Am Board Fam Med 2018; 31: 812-816
  • 44 Belginova S, Uvaliyeva I, Ismukhamedova A. Decision support system for diagnosing anemia. 4th International Conference on Computer and Technology Applications (ICCTA 2018). Istanbul, Turkey: 2018: 211-215
  • 45 Soman S, Zasuwa G, Yee J. Automation, decision support, and expert systems in nephrology. Adv Chronic Kidney Dis 2008; 15: 42-55
  • 46 Will EJ, Richardson D, Tolman C. et al. Development and exploitation of a clinical decision support system for the management of renal anaemia. Nephrol Dial Transplant 2007; 22 (Suppl. 04) iv31-iv36
  • 47 Eckelt F, Remmler J, Kister T. et al. Verbesserte Patientensicherheit durch „clinical decision support systems“ in der Labormedizin. Internist (Berl) 2020; 61: 452-459
  • 48 Kister TS, Remmler J, Schmidt M. et al. Acute kidney injury and its progression in hospitalized patients – Results from a retrospective multicentre cohort study with a digital decision support system. PLoS One 2021; 16: e0254608
  • 49 Walter Costa MB, Wernsdorfer M, Kehrer A. et al. The Clinical Decision Support System AMPEL for Laboratory Diagnostics: Implementation and Technical Evaluation. JMIR Med Inform 2021; 9: e20407