Synthesis 2022; 54(05): 1203-1216 DOI: 10.1055/a-1684-0772
Progress in the Synthesis of N -Acyl-N ,O -acetals
Xiao-Yan Ma∗
a
School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
,
Fu-Qiang Shao‡
b
Department of Nuclear Medicine, Zigong First People's Hospital & Zigong Academy of Medical Sciences, Zigong, Sichuan 643000, P. R. China
,
Xinjun Hu
a
School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
c
Graphene Institute of Lanzhou University Fangda Carbon, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
,
Xingyong Liu
a
School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
› Author Affiliations This work was financially supported by National Natural Science Foundation of China (21901174), the Cooperation Project of Wuliangye Group Co., Ltd. and Sichuan University of Science & Engineering, China (CXY2019ZR013), and the China Postdoctoral Science Foundation (2020M683704XB).
Abstract
N -Acyl-N ,O -acetals are key components in a variety of bioactive natural products. Furthermore, they are synthetic equivalents of unstable N -acylimines and building blocks in organic synthesis. Tremendous efforts have been made in the synthesis of such acetals, these methods can be broadly classified into two categories: electrochemical oxidation and chemical methods. Herein, we will summarize progress in the preparation of these subunits, which may aid the development of new synthetic methods for N -acyl-N ,O -acetals.
1 Introduction
2 Synthetic Methods for Preparing N -Acyl-N ,O -acetals
2.1 Electrochemical Oxidation
2.2 Chemical Methods
2.3 Other Methods
3 Summary and Outlook
Key words
N -acyl-
N ,
O -acetal -
natural products -
synthetic equivalent -
electrochemical oxidation -
chemical method
Publication History
Received: 20 September 2021
Accepted after revision: 02 November 2021
Accepted Manuscript online: 02 November 2021
Article published online: 14 December 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Smith AB. III,
Safanov IG,
Corbett RM.
J. Am. Chem. Soc. 2001; 123: 12426
1b
Troast DM,
Porco JA.
Org. Lett. 2002; 4: 991
2
Benz F,
Knüsel F,
Nüesch J,
Treichler H,
Voser W,
Nyfeler R,
Keller-Schierlein W.
Helv. Chim. Acta 1974; 57: 2459
3a
Takeuchi T,
Iinuma H,
Kunimoto S,
Masuda T,
Ishizuka M,
Takeuchi M,
Hamada M,
Naganawa H,
Kondo S,
Umezawa H.
J. Antibiot. 1981; 34: 1619
3b
Umezawa H,
Kondo S,
Iinuma H,
Kunimoto S,
Ikeda Y,
Iwasawa H,
Ikeda D,
Takeuchi T.
J. Antibiot. 1981; 34: 1622
4
Sohn J.-H,
Waizumi N,
Zhong MZ,
Rawal VH.
J. Am. Chem. Soc. 2005; 127: 7290
5
Konishi M,
Saito K.-I,
Numata K.-I,
Tsuno T,
Asama K,
Tsukiura H,
Naito T,
Kawaguchi H.
J. Antibiot. 1977; 30: 789
6a
Cichewicz RH,
Valeriote FA,
Crews P.
Org. Lett. 2004; 6: 1951
6b
Jiang X,
Garcia-Fortanet J,
De Brabander JK.
J. Am. Chem. Soc. 2005; 127: 11254
6c
Jiang X,
Williams N,
De Brabander JK.
Org. Lett. 2007; 9: 227
6d
Shangguan N,
Kiren S,
Williams LJ.
Org. Lett. 2007; 9: 1093
7
Jewett JC,
Rawal VH.
Angew. Chem. Int. Ed. 2007; 46: 6502
8a
Mosey RA,
Floreancig PE.
Nat. Prod. Rep. 2012; 29: 980
8b
Pettit GR,
Xu J.-P,
Chapuis J.-C,
Pettit RK,
Tackett LP,
Doubek DL,
Hooper JN. A,
Schmidt JM.
J. Med. Chem. 2004; 47: 1149
8c
Wan S,
Wu F,
Rech JC,
Green ME,
Balachandran R,
Horne WS,
Day BW,
Floreancig PE.
J. Am. Chem. Soc. 2011; 133: 16668
9a
Vanier C,
Wagner A,
Mioskowski C.
Chem. Eur. J. 2001; 7: 2318
9b
Sugiura M,
Hagio H,
Hirabayashi R,
Kobayshi S.
J. Am. Chem. Soc. 2001; 123: 12510
10
Linstead RP,
Shephard BR,
Weedon BC. L.
J. Chem. Soc. 1951; 2854
11
Ross SD,
Finkelstein M,
Petersen RC.
J. Am. Chem. Soc. 1966; 88: 4657
12
Rudd EJ,
Finkelstein M,
Ross SD.
J. Org. Chem. 1972; 37: 1763
13
Finkelstein M,
Ross SD.
Tetrahedron 1972; 28: 4497
14
Shono T,
Hamaguchi H,
Matsumura Y.
J. Am. Chem. Soc. 1975; 97: 4264
15
Iwasaki T,
Horikawa H,
Matsumoto K,
Miyoshi M.
Bull. Chem. Soc. Jpn. 1979; 52: 826
16
Yoshida J.-I,
Isoe S.
Tetrahedron Lett. 1987; 28: 6621
17
Suda K,
Hotoda K,
Watanabe J.-I,
Shiozawa K,
Takanami T.
J. Chem. Soc., Perkin Trans. 1 1992; 1283
18
Kamada T,
Oku A.
J. Chem. Soc., Perkin Trans. 1 1998; 3381
19
Siu T,
Li W,
Yudin AK.
J. Comb. Chem. 2000; 2: 545
20
Matsumura Y,
Shirakawa Y,
Satoh Y,
Umino M,
Tanaka T,
Maki T,
Onomura O.
Org. Lett. 2000; 2: 1689
21
Tajima T,
Kurihara H,
Fuchigami T.
J. Am. Chem. Soc. 2007; 129: 6680
22
Mazurkiewicz R,
Adamek J,
Październiok-Holewa A,
Zielińska K,
Simka W,
Gajos A,
Szymura K.
J. Org. Chem. 2012; 77: 1952
23
Green RA,
Brown RC. D,
Pletch D.
Org. Process Res. Dev. 2015; 19: 1424
24
Breuer SW,
Bernath T,
Ben-Ishai D.
Tetrahedron 1967; 23: 2869
25
Phan XT,
Shannon PJ.
J. Org. Chem. 1983; 48: 5164
26
Lokensgard JP,
Fischer JW,
Bartz WJ,
Meinwald J.
J. Org. Chem. 1985; 50: 5609
27
Nagasaka T,
Tamano H,
Hamaguchi F.
Heterocycles 1986; 24: 1231
28
Harding KE,
Liu LT,
Farrar DG,
Coleman MT,
Tansey SK.
Synth. Commun. 1991; 21: 1409
29
Katritzky AR,
Fan WQ,
Black M,
Pernak J.
J. Org. Chem. 1992; 57: 547
30
Hoffman RV,
Nayyar NK.
J. Org. Chem. 1994; 59: 3530
31
Gizecki P,
Ait Youcef R,
Poulard C,
Dhal R,
Dujardin G.
Tetrahedron Lett. 2004; 45: 9589
32
Wan S,
Green ME,
Park J.-H,
Floreancig PE.
Org. Lett. 2007; 9: 5385
33
Li G,
Fronczek FR,
Antilla JC.
J. Am. Chem. Soc. 2008; 130: 12216
34
Shao N,
Huang X,
Palani A,
Aslanian R,
Buevich A,
Piwinski J,
Huryk R,
Seidel-Dugan C.
Synthesis 2009; 17: 2855
35
Downey CW,
Fleisher AS,
Rague JT,
Safran CL,
Venable ME,
Pike RD.
Tetrahedron Lett. 2011; 52: 4756
36
Li M,
Luo B,
Liu Q,
Hu YA,
Ganesan A,
Huang P,
Wen S.
Org. Lett. 2014; 16: 10
37
Halli J,
Hofman K,
Beisel T,
Manolikakes G.
Eur. J. Org. Chem. 2015; 4624
38
Enright RN,
Grinde JL,
Wurtz LI,
Paeth MS,
Wittman TR,
Cliff ER,
Sankari YT,
Henningsen LT,
Tan C,
Scanlon JD,
Willoughby PH.
Tetrahedron 2016; 72: 6397
39
Yi Y,
Gholami H,
Morrow MG,
Borhan B.
Org. Biomol. Chem. 2017; 15: 9570
40
Ma X.-Y,
Zhang C.-F,
Hu X,
Zou W,
Li Y.
Tetrahedron 2020; 76: 131085
41a
Thomas TG,
Roush WR.
Tetrahedron Lett. 1995; 36: 1581
41b
Kagawa N,
Ihara M,
Toyota M.
J. Org. Chem. 2006; 71: 6796
41c
Kagawa N,
Ihara M,
Toyota M.
Org. Lett. 2006; 8: 875
41d
Hoffmann RW,
Schlapbach A.
Tetrahedron Lett. 1993; 34: 7903
41e
Kocienski PJ,
Narquizian R,
Raubo P,
Smith C,
Boyle FT.
Synlett 1998; 869
41f
Toyota M,
Hirota M,
Hirano H,
Ihara M.
Org. Lett. 2000; 2: 2031
41g
Roush WR,
Pfeifer LA.
Org. Lett. 2000; 2: 859
41h
Roush WR,
Marron TG.
Tetrahedron Lett. 1993; 34: 5421
42a
Uesugi S.-I,
Watanabe T,
Imaizumi T,
Ota Y,
Yoshida K,
Ebisu H,
Chinen T,
Nagumo Y,
Shibuya M,
Kanoh N,
Usui T,
Iwabuchi Y.
J. Org. Chem. 2015; 80: 12333
42b
An C,
Jurica JA,
Walsh SP,
Hoye AT,
Smith AB. III.
J. Org. Chem. 2013; 78: 4278
42c
An C,
Hoye AT,
Smith AB. III.
Org. Lett. 2012; 14: 4350
42d
Smith AB. III,
Jurica JA,
Walsh SP.
Org. Lett. 2008; 10: 5625
42e
Crimmins MT,
Stevens JM,
Schaaf GM.
Org. Lett. 2009; 11: 3990
42f
Watanabe T,
Imaizumi T,
Chinen T,
Nagumo Y,
Shibuya M,
Usui T,
Kanoh N,
Iwabuchi Y.
Org. Lett. 2010; 12: 1040
43a
Rölle T,
Hoffmann RW.
Helv. Chim. Acta 2004; 87: 1214
43b
Kocienski PJ,
Narquizian R,
Raubo P,
Smith C,
Boyle FT.
Synlett 1998; 1432
44a
Trost BM,
Yang H,
Probst GD.
J. Am. Chem. Soc. 2004; 126: 48
44b
Fukui H,
Tsuchiya Y,
Fujita K,
Nakagawa T,
Koshino H,
Nakata T.
Bioorg. Med. Chem. Lett. 1997; 7: 2081
44c
Kocienski P,
Raubo P,
Davis JK,
Boyle FT,
Davies DE,
Richter A.
J. Chem. Soc., Perkin Trans. 1 1996; 1797
44d
Kocienski PJ,
Raubo P,
Smith C,
Boyle FT.
Synthesis 1999; 2087
44e
Hong CY,
Kishi Y.
J. Org. Chem. 1990; 55: 4242
44f
Roush WR,
Pfeifer LA,
Marron TG.
J. Org. Chem. 1998; 63: 2064
45
Nishii Y,
Higa T,
Takahashi S,
Nakata T.
Tetrahedron Lett. 2009; 50: 3597