Synthesis 2022; 54(08): 2057-2069
DOI: 10.1055/a-1685-2279
paper

Reactions of 1-Trifluoromethylprop-2-yne 1-Iminium Salts with Nitroanilines: Synthesis of 4-Trifluoromethylnitroquinolines and 1,2,3-Trisubstituted 5-Trifluoromethylpyrroles

Bianca Seitz
,
Thomas Schneider
,
Nikola Majstorovic
,
Maximilian Fleischmann
,
Gerhard Maas
Financial support by Ulm University is gratefully acknowledged.


Abstract

A variety of 4-trifluoromethylquinolines bearing an aryl (or cyclopropyl, tert-butyl, trimethylsilyl) group at C-2 and a nitro group at ring position 6, 7 or 8 have been prepared in good to high yields from 3-substituted 1-(trifluoromethyl)prop-2-yne 1-iminium triflate salts and o-, m- or p-nitroaniline. These reactions include an aza-Michael reaction at room temperature followed by an intramolecular electrophilic aromatic substitution step, which requires additional thermal activation in most cases. In contrast, the conjugate addition of 2,4-dinitroanilines at the acetylenic iminium ions proceeds much more slowly and some of the adducts can be converted thermally into 2-(2,4-dinitrophenyl)-5-trifluoromethylpyrroles. Analogously, 2-(4-pyridyl)-5-trifluoromethylpyrroles were obtained from 3-aryl-1-(trifluoromethyl)propyn­iminium salts and 4-aminopyridinium triflate. A novel variation of the Truce–Smiles rearrangement is probably involved in the formation of these pyrroles.

Supporting Information



Publication History

Received: 07 October 2021

Accepted after revision: 03 November 2021

Accepted Manuscript online:
03 November 2021

Article published online:
14 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Balasubramanian M, Keay JG. Pyridines and their Benzo Derivatives: Applications . In Comprehensive Heterocyclic Chemistry II, Vol. 5. Katritzky AR, Rees CW, Scriven EF. V, McKillop A. Pergamon; Oxford: 1996: 245-300
    • 2a Shang X.-F, Morris-Natschke SL, Liu Y.-Q, Guo X, Xu X.-S, Goto M, Li J.-C, Yang G.-Z, Lee K.-H. Med. Res. Rev. 2018; 38: 775
    • 2b Shang X.-F, Morris-Natschke SL, Yang G.-Z, Liu Y.-Q, Guo X, Xu X.-S, Goto M, Li JC, Zhang J.-Y, Lee K.-H. Med. Res. Rev. 2018; 38: 1614
  • 3 Polanski J, Kurczyk A, Bak A, Musiol R. Curr. Med. Chem. 2012; 19: 1921
    • 4a Egan TJ. Expert Opin. Ther. Pat. 2001; 11: 185
    • 4b Ridley RG, Hudson AT. Expert Opin. Ther. Pat. 1998; 8: 121
    • 4c Kaur K, Jain M, Reddy RP, Jain R. Eur. J. Med. Chem. 2010; 45: 3245
  • 5 Keri RS, Patil SA. Biomed. Pharmacother. 2014; 68: 1161
  • 6 Musiol R. Expert Opin. Drug Discovery 2017; 12: 583
  • 7 Musiol R, Serda M, Hensel-Bielowka S, Polanski J. Curr. Med. Chem. 2010; 17: 1960
    • 8a Joule JA, Mills K. Heterocyclic Chemistry, 5th ed. John Wiley & Sons; Chichester: 2010. Chap. 9.15
    • 8b Hauptmann S, Eicher T, Speicher A. The Chemistry of Heterocycles, 3rd ed. Wiley-VCH; Weinheim: 2012. Chap. 6.16
    • 9a Keller PA. Pyridines and their Benzo Derivatives: Synthesis . In Comprehensive Heterocyclic Chemistrry III, Chap. 7.05. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Amsterdam: 2008: 217-308
    • 9b Jones G. Pyridines and their Benzo Derivatives: Synthesis . In Comprehensive Heterocyclic Chemistry II, Vol. 5. Katritzky AR, Rees CW, Scriven EF. V, McKillop A. Pergamon; Oxford: 1996: 167-243

      Reviews:
    • 10a Teja C, Khan FR. N. Chem. Asian J. 2020; 15: 4153
    • 10b Shan Y, Su L, Zhao Z, Chen D. Adv. Synth. Catal. 2021; 363: 851
    • 10c Weyesa A, Mulugeta E. RSC Adv. 2020; 10: 20784
    • 10d Prajapati SM, Patel KD, Vekariya RH, Panchal SN, Patel HD. RSC Adv. 2014; 4: 24463

      Selected papers:
    • 11a Bonacorso HG, Andrighetto R, Zanatta N, Martins MA. P. Tetrahedron Lett. 2010; 51: 3752
    • 11b Bonacorso HG, Andrighettto R, Krüger N, Navarini J, Flores AF. C, Martins MA. P, Zanatta N. J. Heterocycl. Chem. 2013; 50: 193
    • 11c Bonacorso HG, Rodrigues MB, Feitosa SC, Coelho HS, Alves SH, Keller JT, Rosa WC, Ketzer A, Frizzo CP, Martins MA. P, Zanatta N. J. Fluorine Chem. 2018; 205: 49
    • 11d Bonacorso HG, Rodrigues MB, Iglesias BA, da Silveira CH, Feitosa SC, Rosa WC, Martins MA. P, Frizzo CP, Zanatta N. New J. Chem. 2018; 42: 10024
    • 11e Kappenberg YG, Ketzer A, Stefanello FS, Salbego PR. S, Acunha TV, Abbadi BL, Bizarro CV, Basso LA, Machado P, Martins MA. P, Zanatta N, Iglesias BA, Bonacorso HG. New J. Chem. 2019; 43: 12375
    • 11f El Kharrat S, Skander M, Dahmani A, Laurent P, Blancou H. J. Org. Chem. 2005; 70: 8327
    • 11g Vuong H, Stentzel MR, Klumpp DA. Tetrahedron Lett. 2020; 61: 151630
  • 12 Caprio V. Pyridines and their Benzo Derivatives: Reactivity of Substituents. In Comprehensive Heterocyclic Chemistrry III, Chap. 7.03 . Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Amsterdam: 2008: 101-169

    • Selected papers on trifluoromethylation by C–H bond cleavage:
    • 13a Chen X, Ding L, Li L, Li J, Zou D, Wu Y, Wu Y. Tetrahedron Lett. 2020; 61: 151538
    • 13b Nishida T, Ida H, Kuninobu Y, Kanai M. Nat. Commun. 2014; 5: 3387
    • 13c Shirai T, Kanai M, Kuninobu Y. Org. Lett. 2018; 20: 1593

      Selected papers on trifluoromethylation by C–Hal bond cleavage:
    • 14a Oshi M, Kondo H, Amii H. Chem. Commun. 2009; 1909
    • 14b Lishchynskyi A, Novikov MA, Martin E, Escudero-Adán EC, Novák P, Grushin VV. J. Org. Chem. 2013; 78: 11126
  • 15 Schneider T, Fleischmann M, Hergesell D, Majstorović N, Maas G. Eur. J. Org. Chem. 2021; 2869
  • 16 Salts 1 should correctly by named as 4-substituted 1,1,1-trifluorobut-2-yn-1-iminium triflates. We have chosen ‘1-trifluoromethyl-propyne 1-iminium salts’ to lay a focus on the structural moiety that defines the chemical reactivity of this class of acetylenic iminium salts.
  • 17 Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
  • 18 Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 19a Ainscough EW, Plowman RA. Aust. J. Chem. 1970; 23: 404
    • 19b Hinde RW, Raper WG. C. (Monsanto Chemicals, Australia). US patent 3,347864, 1967
    • 19c O’Neill PM, Storr RC, Park BK. Tetrahedron 1998; 54: 4615
    • 19d Wang Y, Ai J, Wang Y, Chen Y, Wang L, Liu G, Geng M, Zhang A. J. Med. Chem. 2011; 54: 2127
    • 19e Skolyapova AD, Selivanova GA, Tretyakov EV, Bagryanskaya IY, Shteingarts VD. J. Fluorine Chem. 2018; 211: 14
  • 20 Makosza M, Kinowski A, Dunikiewicz W, Mudryk B. Liebigs Ann. 1986; 69
    • 21a Uehata K, Kawakami T, Suzuki H. J. Chem. Soc., Perkin Trans. 1 2002; 696 ; and papers cited therein
    • 21b Szpakiewicz B, Grzegożek M. Can. J. Chem. 2008; 86: 682
    • 21c Couch GD, Burke PJ, Knox RJ, Moody CJ. Tetrahedron 2008; 64: 2816
    • 21d Grzegozek M. J. Heterocycl. Chem. 2008; 45: 1879
    • 21e Amangasieva GA, Avakyan EK, Demidov OP, Borovleva AA, Pobedinskaya DY, Borovlev IV. Chem. Heterocycl. Compd. 2019; 55: 623
    • 21f Demidov OP, Pobedinskaya DA, Avakyan EK, Amangasieva GA, Borovlev IV. Chem. Heterocycl. Compd. 2018; 54: 875
  • 22 Mancini PM. E, Kneeteman M, Della Rosa C, Bravo V, Adam C. Ionic Liquids in Polar Diels–Alder Reactions Using Carbocycles and Heterocycles as Dienophiles. In Ionic Liquids – Classes and Properties, Chap. 13. Handy S. InTech; Rijeka: 2011. ISBN: 978-953-307-634-8
  • 23 Schneider T, Seitz B, Schiwek M, Maas G. J. Fluorine Chem. 2020; 235: 109567
    • 24a Linderman RJ, Krollos KS. Tetrahedron Lett. 1990; 31: 2689
    • 24b Lefebvre O, Marull M, Schlosser M. Eur. J. Org. Chem. 2003; 2115
    • 24c Marull M, Schlosser M. Eur. J. Org. Chem. 2003; 1576
    • 24d Nan J, Hu Y, Chen P, Ma Y. Org. Lett. 2019; 21: 1984
    • 25a Cotton FA, Daniels LM, Haefner SC, Murillo CA. Chem. Commun. 1996; 2507
    • 25b Davies IW, Marcoux J.-F, Wu J, Palucki M, Corley EG, Robbins MA, Tsou N, Ball RG, Dormer P, Larsen RD, Reider PJ. J. Org. Chem. 2000; 65: 4571
    • 25c Girija CR, Begum NS, Sridhar MA, Lokanath NK, Prasad JS. Acta Crystallogr., Sect. E: Struct. Rep. Online 2004; 60: 586
  • 26 Kratzer P, Steinhauser S, Maas G. Z. Naturforsch., B: J. Chem. Sci. 2014; 69: 567
  • 27 Tripathi M, Regnier V, Lincheneau C, Martin D. New J. Chem. 2017; 41: 15016
    • 28a Girling PR, Batsanov AS, Shen HC, Whiting A. Chem. Commun. 2012; 48: 4893
    • 28b Chisholm DR, Valentine R, Pohl E, Whiting A. J. Org. Chem. 2016; 81: 7557
    • 28c Jebari M, Pasturaud K, Picard B, Maddaluno J, Rezgui F, Chataigner I, Legros J. Org. Biomol. Chem. 2016; 14: 11085
  • 29 Zhuo JC. Magn. Reson. Chem. 1997; 35: 21

    • Recent reviews:
    • 30a Henderson AR. P, Kosowan JR, Wood TE. Can. J. Chem. 2017; 95: 483
    • 30b Holden CM, Greaney MF. Chem. Eur. J. 2017; 23: 8992
    • 30c Snape TJ. Chem. Soc. Rev. 2008; 37: 2452

      For polar Smiles rearrangements, strongly electron-withdrawing substituents on the migrating aryl ring or a similar hetaryl ring are frequently beneficial:
    • 31a Holden CM, Sohel SM. A, Greaney MF. Angew. Chem. Int. Ed. 2016; 55: 2450 ; Angew. Chem. 2016, 128, 2496
    • 31b Rabet PT. G, Boyd S, Greaney MF. Angew. Chem. Int. Ed. 2017; 56: 4183 ; Angew. Chem. 2017, 129, 4247; Angew. Chem. 2016, 128, 2496
    • 31c Liu J, Ba D, Lv W, Chen Y, Zhao Z, Cheng G. Adv. Synth. Catal. 2020; 362: 213
  • 32 For the role of a 1,2-N-ylide in an NHC-catalyzed Truce–Smiles rearrangement, see: Yasui K, Kamitani M, Fujimoto H, Tobisu M. Org. Lett. 2021; 23: 1572
  • 33 Zanatta N, Schneider JM. F. M, Schneider PH, Wouters AD, Bonacorso HG, Martins MA. P, Wessjohann LA. J. Org. Chem. 2006; 71: 6996
  • 34 Zachow LL, Mittersteiner M, Aquino EC, Bonacorso HG, Martins MA. P, Zanatta N. Synthesis 2021; 53: 2841
  • 35 Wen S, Tian Q, Chen Y, Zhang Y, Cheng G. Org. Lett. 2021; 23: 7407
  • 36 Funt LD, Tomashenko OA, Novikov MS, Khlebnikov AF. Synthesis 2018; 50: 4809