Flugmedizin · Tropenmedizin · Reisemedizin - FTR 2021; 28(06): 285-294
DOI: 10.1055/a-1686-8318
Raumfahrtmedizin

Die ISS am Anfang einer neuen Ära der Raumfahrtmedizin

The ISS at the dawn of a new era in space medicine
Thu Jennifer Ngo-Anh
1   European Space Agency ESA, Noordwijk, Niederlande
,
Oliver Ullrich
2   Innovation Cluster Space and Aviation (UZH Space Hub), University of Zurich, Schweiz
3   Raumfahrtmedizin, Fachbereich Wirtschaftsingenieurwesen, Ernst-Abbe-Hochschule Jena
4   Weltraumbiotechnologie, Otto-von-Guericke-Universität Magdeburg
› Institutsangaben

ZUSAMMENFASSUNG

Die Raumfahrtmedizin steht aktuell vor 2 enormen Herausforderungen: Zum einen erfordern die geplanten interplanetaren Langzeitmissionen eine gewaltige Weiterentwicklung von medizinischem Wissen, Prozeduren und Technologien, die anschließend in einer weitgehend autonomen Umgebung fern der Erde zum Einsatz kommen müssen, zum anderen erfordert die menschliche Präsenz im All neben hochselektierten Berufsastronauten die Einbeziehung eines weitaus größeren Personenkreises an Menschen. Die Internationale Raumstation (ISS) – als Forschungsstation im All in sicherer Nähe zur Erde – ermöglicht seit mehr als 20 Jahren raumfahrtmedizinische Forschung, als zwingende Grundlagen für die Mobilität des Menschen im All und als Laboratorium zur Gewinnung medizinischer Erkenntnisse zur Erhaltung der Gesundheit des Menschen, die auf der Erde so nicht möglich wären. Die ISS ist für die Medizin die Brücke ins All und gleichzeitig ein Laboratorium für die Erde.

Abstract

Space medicine is currently facing 2 enormous challenges: On the one hand, the planned long-term interplanetary missions require a tremendous advancement of medical knowledge, procedures and technologies, which must subsequently be applied in a largely autonomous environment far from Earth; on the other hand, the human presence in space requires the involvement of a much larger group of human in addition to highly selected professional astronauts. The International Space Station (ISS) – as a research station in space in safe proximity to Earth – has enabled research in space medicine for more than 20 years, as a compelling foundation for human mobility in space and as a laboratory for gaining medical knowledge to maintain human health that would be impossible on Earth. The ISS is the bridge to space for medicine and at the same time a laboratory for the Earth.



Publikationsverlauf

Artikel online veröffentlicht:
15. Dezember 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Stepanek J, Blue RS, Parazynski S. Space Medicine in the Era of Civilian Spaceflight. N Engl J Med 2019; 380: 1053-1060
  • 2 Bogomolov VV, Castrucci F, Comtois JM. et al International Space Station medical standards and certification for space flight participants. Aviat Space Environ Med 2007; 78: 1162-1169
  • 3 National Aeronautics and Space Administration. NASA space flight human system standards. Volume C. Washington, DC: NASA; 2016
  • 4 Jennings RT, Murphy DM, Ware DL. et al Medical qualification of a commercial spaceflight participant: not your average astronaut. Aviat Space Environ Med 2006; 77: 475-484
  • 5 Blue RS, Pattarini JM, Reyes DP. et al Tolerance of centrifuge-simulated suborbital spaceflight by medical condition. Aviat Space Environ Med 2014; 85: 721-729
  • 6 Blue RS, Bonato F, Seaton K. et al The Effects of Training on Anxiety and Task Performance in Simulated Suborbital Spaceflight. Aerosp Med Hum Perform 2017; 88: 641-650
  • 7 Blue RS, Riccitello JM, Tizard J. et al Commercial spaceflight participant G-force tolerance during centrifuge-simulated suborbital flight. Aviat Space Environ Med 2012; 83: 929-934
  • 8 Human space flight requirements for crew and space flight participants: final rule. Washington, DC: Department of Transportation, Federal Aviation Administration; 2006
  • 9 Aerospace Medical Association Task Force on Space Travel. Medical guidelines for space passengers. Aerospace Medical Association Task Force on Space Travel. Aviat Space Environ Med 2001; 72: 948-950
  • 10 Rayman RS, Antuñano MJ, Garber MA. et al Medical guidelines for space passengers – II. Aviat Space Environ Med 2002; 73: 1132-1134
  • 11 ISS Program Science Forum. International Space Station, Utilization Statistics, Expeditions 0 - 62, December 1998 - April 2020
  • 12 Van Ombergen A, Jillings S, Jeurissen B. et al Brain Tissue-Volume Changes in Cosmonauts. N Engl J Med 2018; 379: 1678-1680
  • 13 Jillings S, Van Ombergen A, Tomilovskaya E. et al Macro- and microstructural changes in cosmonauts’ brains after long-duration spaceflight. Sci Adv 2020; 6: eaaz9488
  • 14 Cebolla AM, Petieau M, Dan B. et al Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness. Sci Rep 2016; 6: 37824
  • 15 Gunga HC, Werner A, Stahn A. et al The Double Sensor – A non-invasive device to continuously monitor core temperature in humans on earth and in space. Respir Physiol Neurobiol 2009; 169 (Suppl. 01) S63-S68
  • 16 Stahn AC, Werner A, Opatz O. et al Increased core body temperature in astronauts during long-duration space missions. Sci Rep 2017; 7: 16180
  • 17 Norsk P. Blood pressure regulation IV: adaptive responses to weightlessness. Eur J Appl Physiol 2014; 114: 481-497
  • 18 Norsk P. Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions. Acta Physiol (Oxf) 2020; 228: e13434
  • 19 Khine HW, Steding-Ehrenborg K, Hastings JL. et al Effects of Prolonged Spaceflight on Atrial Size, Atrial Electrophysiology, and Risk of Atrial Fibrillation. Circ Arrhythm Electrophysiol 2018; 11: e005959
  • 20 Arbeille P, Provost R, Zuj K. Carotid and Femoral Artery Intima-Media Thickness During 6 Months of Spaceflight. Aerosp Med Hum Perform 2016; 87: 449-453
  • 21 Arbeille P, Provost R, Zuj K. et al Measurements of jugular, portal, femoral, and calf vein cross-sectional area for the assessment of venous blood redistribution with long duration spaceflight (Vessel Imaging Experiment). Eur J Appl Physiol 2015; 115: 2099-2106
  • 22 Auñón-Chancellor SM, Pattarini JM, Moll S. et al Venous Thrombosis during Spaceflight. N Engl J Med 2020; 382: 89-90
  • 23 Marshall-Goebel K, Laurie SS, Alferova IV. et al Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight. JAMA Netw Open 2019; 2: e1915011
  • 24 Sandonà D, Desaphy JF, Camerino GM. et al Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission. PLoS One 2012; 7: e33232
  • 25 Rittweger J, Albracht K, Flück M. et al Sarcolab pilot study into skeletal muscle’s adaptation to long-term spaceflight. NPJ Microgravity 2018; 4: 18
  • 26 Schneider S, Peipsi A, Stokes M. et al Feasibility of monitoring muscle health in microgravity environments using Myoton technology. Med Biol Eng Comput 2015; 53: 57-66
  • 27 Vico L, van Rietbergen B, Vilayphiou N. et al Cortical and Trabecular Bone Microstructure Did Not Recover at Weight-Bearing Skeletal Sites and Progressively Deteriorated at Non-Weight-Bearing Sites During the Year Following International Space Station Missions. J Bone Miner Res 2017; 32: 2010-2021
  • 28 Vico L, Hargens A. Skeletal changes during and after spaceflight. Nat Rev Rheumatol 2018; 14: 229-245
  • 29 Leblanc A, Matsumoto T, Jones J. et al Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int 2013; 24: 2105-2114
  • 30 Strewe C, Feuerecker M, Nichiporuk I. et al Effects of parabolic flight and spaceflight on the endocannabinoid system in humans. Rev Neurosci 2012; 23: 673-680
  • 31 Buchheim JI, Matzel S, Rykova M. et al Stress Related Shift Toward Inflammaging in Cosmonauts After Long-Duration Space Flight. Front Physiol 2019; 10: 85
  • 32 Crucian BE, Choukèr A, Simpson RJ. et al Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions. Front Immunol 2018; 9: 1437
  • 33 Patel ZS, Brunstetter TJ, Tarver WJ. et al Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. NPJ Microgravity 2020; 6: 33
  • 34 Strohman RC. The coming Kuhnian revolution in biology. Nat Biotechnol 1997; 15: 194-200
  • 35 Coffey DS. Self-organization, complexity and chaos: the new biology for medicine. Nat Med 1998; 4: 882-885
  • 36 Thiel CS, de Zélicourt D, Tauber S. et al Rapid adaptation to microgravity in mammalian macrophage cells. Sci Rep 2017; 7: 43
  • 37 Thiel CS, Tauber S, Christoffel S. et al Rapid coupling between gravitational forces and the transcriptome in human myelomonocytic U937 cells. Sci Rep 2018; 8: 13267
  • 38 Thiel CS, Christoffel S, Tauber S. et al Rapid Cellular Perception of Gravitational Forces in Human Jurkat T Cells and Transduction into Gene Expression Regulation. Int J Mol Sci 2020; 21: 514
  • 39 Vahlensieck C, Thiel CS, Zhang Y. et al Gravitational Force-Induced 3D Chromosomal Conformational Changes Are Associated with Rapid Transcriptional Response in Human T Cells. Int J Mol Sci 2021; 22: 9426
  • 40 European Space Agency. Roadmaps For Future Research. Im Internet. https://esamultimedia.esa.int/docs/HRE/SciSpacE_Roadmaps.pdf Stand: 03.11.2021