Subscribe to RSS
DOI: 10.1055/a-1710-5656
The Contributions of Model Studies for Fundamental Understanding of Polymer Mechanochemistry
The authors thank the funders that supported their work in mechanochemistry in the past decade, particularly the US National Science Foundation, the US Air Force, the Petroleum Research Fund of the American Chemical Society, the UK Engineering and Physical Sciences Research Council, the Royal Society, the Newton Fund, the University of Liverpool and Michelin.
Abstract
The exciting field of polymer mechanochemistry has made great empirical progress in discovering reactions in which a stretching force accelerates scission of strained bonds using single molecule force spectroscopy and ultrasonication experiments. Understanding why these reactions happen, i.e., the fundamental physical processes that govern coupling of macroscopic motion to chemical reactions, as well as discovering other patterns of mechanochemical reactivity require complementary techniques, which permit a much more detailed characterization of reaction mechanisms and the distribution of force in reacting molecules than are achievable in SMFS or ultrasonication. A molecular force probe allows the specific pattern of molecular strain that is responsible for localized reactions in stretched polymers to be reproduced accurately in non-polymeric substrates using molecular design rather than atomistically intractable collective motions of millions of atoms comprising macroscopic motion. In this review, we highlight the necessary features of a useful molecular force probe and describe their realization in stiff stilbene macrocycles. We describe how studying these macrocycles using classical tools of physical organic chemistry has allowed detailed characterizations of mechanochemical reactivity, explain some of the most unexpected insights enabled by these probes, and speculate how they may guide the next stage of mechanochemistry.
Publication History
Received: 25 October 2021
Accepted after revision: 01 December 2021
Accepted Manuscript online:
01 December 2021
Article published online:
10 January 2022
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 O’Neill RT, Boulatov R. Nat. Rev. Chem. 2021; 5: 148
- 2 Akbulatov S, Boulatov R. ChemPhysChem 2017; 18: 1422
- 3 Black AL, Lenhardt JM, Craig SL. J. Mater. Chem. 2011; 21: 1655
- 4 Boulatov R. Nat. Chem. 2013; 5: 84
- 5 Chen Y, Sommer M, Weder C. Macromol. Rapid Commun. 2021; 42: 2000685
- 6 Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP. Chem. Soc. Rev. 2021; 50: 4100
- 7 Willis-Fox N, Rognin E, Aljohani TA, Daly R. Chem 2018; 4: 2499
- 8 Creton C, Ciccotti M. Rep. Prog. Phys. 2016; 79: 46601
- 9 Anderson L, Boulatov R. Adv. Phys. Org. Chem. 2018; 52: 87
- 10 Boulatov R. In Topics in Current Chemistry, Vol. 369. Springer International Publishing; Switzerland: 2015
- 11 Izak-Nau E, Campagna D, Baumann C, Göstl R. Polym. Chem. 2020; 11: 2274
- 12 Huang Z, Boulatov R. Chem. Soc. Rev. 2011; 40: 2359
- 13 Peterson GI, Choi T.-L. Chem. Commun. 2021; 57: 6465
- 14 Stirling CJ. M. Tetrahedron 1985; 41: 1613
- 15 Akbulatov S, Tian Y, Huang Z, Kucharski TJ, Yang X.-Z, Boulatov R. Science 2017; 357: 299
- 16 Wang L, Yu Y, Razgoniaev AO, Johnson PN, Wang C, Tian Y, Boulatov R, Craig SL, Widenhoefer RA. J. Am. Chem. Soc. 2020; 142: 17714
- 17 Huang Z, Boulatov R. Pure Appl. Chem. 2010; 82: 931
- 18 Kucharski TJ, Boulatov R. J. Mater. Chem. 2011; 21: 8237
- 19 Jezowski SR, Zhu L, Wang Y, Rice AP, Scott GW, Bardeen CJ, Chronister EL. J. Am. Chem. Soc. 2012; 134: 7459
- 20 Dubinskaya AM. Russ. Chem. Rev. 1999; 68: 637
- 21 Tian Y, Boulatov R. ChemPhysChem 2012; 13: 2277
- 22 Boulatov R. Pure Appl. Chem. 2011; 83: 25
- 23 Ribas-Arino J, Marx D. Chem. Rev. 2012; 112: 5412
- 24 Yang Q.-Z, Huang Z, Kucharski TJ, Khvostichenko D, Chen J, Boulatov R. Nat. Nanotechnol. 2009; 4: 302
- 25 Kucharski TJ, Boulatov R. In Optical Nano and Micro Actuator Technology, Chap. 3 . Knopf GK. CRC Press; Boca Raton: 2012: 83-106
- 26 Kucharski TJ, Tian Y, Akbulatov S, Boulatov R. Energy Environ. Sci. 2011; 4: 4449
- 27 Sun C.-L, Wang C, Boulatov R. ChemPhotoChem 2019; 3: 268
- 28 Wang Y, Tian Y, Chen Y.-Z, Niu L.-Y, Wu L.-Z, Tung C.-H, Yang Q.-Z, Boulatov R. Chem. Commun. 2018; 54: 7991
- 29 Kean ZS, Akbulatov S, Tian Y, Widenhoefer RA, Boulatov R, Craig SL. Angew. Chem. Int. Ed. 2014; 52: 14508
- 30 Zhao D, Neubauer TM, Feringa BL. Nat. Commun. 2015; 6: 6652
- 31 Wang J.-X, Niu L.-Y, Chen P.-Z, Chen Y.-Z, Yang Q.-Z, Boulatov R. Chem. Commun. 2019; 55: 7017
- 32 Yan X, Xu J.-F, Cook TR, Huang F, Yang Q.-Z, Tung C.-H, Stang PJ. Proc. Natl. Acad. Sci. U.S.A. 2014; 111: 8717
- 33 Villarón D, Wezenberg SJ. Angew. Chem. Int. Ed. 2020; 59: 13192
- 34 Huang Z, Yang Q.-Z, Khvostichenko D, Kucharski TJ, Chen J, Boulatov R. J. Am. Chem. Soc. 2009; 131: 1407
- 35 Mcmurry JE. Chem. Rev. 2013; 89: 1513
- 36 Takeda T, Tsubouchi A. Org. React. 2013; 1-470
- 37 Huang Z, Yang Q.-Z, Kucharski TJ, Khvostichenko D, Wakeman SM, Boulatov R. Chem. Eur. J. 2009; 15: 5212
- 38 Ruddock JM, Yong H, Stankus B, Du W, Goff N, Chang Y, Odate A, Carrascosa AM, Bellshaw D, Zotev N, Liang M, Carbajo S, Koglin J, Robinson JS, Boutet S, Kirrander A, Minitti MP, Weber PM. Sci. Adv. 2019; 5: eaax6625
- 39 Tian Y, Boulatov R. Phys. Chem. Chem. Phys. 2016; 18: 26990
- 40 Zhang H, Li X, Lin Y, Gao F, Tang Z, Su P, Zhang W, Xu Y, Weng W, Boulatov R. Nat. Commun. 2017; 8: 1147
- 41 Zhang Y, Wang Z, Kouznetsova TB, Sha Y, Xu E, Shannahan L, Fermen-Coker M, Lin Y, Tang C, Craig SL. Nat. Chem. 2021; 13: 56
- 42 Horst M, Yang J, Meisner J, Kouznetsova TB, Martínez TJ, Craig SL, Xia Y. J. Am. Chem. Soc. 2021; 143: 12328
- 43 Akbulatov S, Tian YC, Boulatov R. J. Am. Chem. Soc. 2012; 134: 7620
- 44 Tian YC, Kucharski TJ, Yang QZ, Boulatov R. Nat. Commun. 2013; 4: 2538
- 45 Tian Y, Cao X, Li X, Zhang H, Sun C.-L, Xu Y, Weng W, Zhang W, Boulatov R. J. Am. Chem. Soc. 2020; 142: 18687
- 46 Yang J, Horst M, Werby SH, Cegelski L, Burns NZ, Xia Y. J. Am. Chem. Soc. 2020; 142: 14619
- 47 Wu D, Lenhardt JM, Black AL, Akhremitchev BB, Craig SL. J. Am. Chem. Soc. 2010; 132: 15936
- 48 Barbee MH, Kouznetsova T, Barrett SL, Gossweiler GR, Lin Y, Rastogi SK, Brittain WJ, Craig SL. J. Am. Chem. Soc. 2018; 140: 12746
- 49 Kauzmann W, Eyring H. J. Am. Chem. Soc. 1940; 62: 3113
- 50 Hermes M, Boulatov R. J. Am. Chem. Soc. 2011; 133: 20044
- 51 Kucharski TJ, Yang Q.-Z, Tian Y, Boulatov R. J. Phys. Chem. Lett. 2010; 1: 2820
- 52 Pan Y, Zhang H, Xu P, Tian Y, Wang C, Xiang S, Boulatov R, Weng W. Angew. Chem. Int. Ed. 2020; 50: 21980
- 53 Brown CL, Bowser BH, Meisner J, Kouznetsova TB, Seritan S, Martinez TJ, Craig SL. J. Am. Chem. Soc. 2021; 143: 3846
- 54 Wang JP, Kouznetsova TB, Boulatov R, Craig SL. Nat. Commun. 2016; 7: 13433
- 55 Chen Z, Mercer JA. M, Zhu X, Romaniuk JA. H, Pfattner R, Cegelski L, Martinez TJ, Burns NZ, Xia Y. Science 2017; 357: 475
- 56 Akbulatov S, Tian YC, Kapustin E, Boulatov R. Angew. Chem. Int. Ed. 2013; 52: 6992
- 57 Lei H, Ma Q, Li W, Wen J, Ma H, Qin M, Wang W, Cao Y. Nat. Commun. 2021; 12: 5082
- 58 Kucharski TJ, Huang Z, Yang Q.-Z, Tian Y, Rubin NC, Concepcion CD, Boulatov R. Angew. Chem. Int. Ed. 2009; 48: 7040
- 59 Tobe ML, Burgess J. Inorganic Reaction Mechanisms . Pearson; London: 1999
- 60 Chakrabarti S, Hinczewski M, Thirumalai D. J. Struct. Biol. 2016; 197: 50
- 61 Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL. Science 2010; 329: 1057
- 62 Wang J, Kouznetsova TB, Boulatov R, Craig SL. Nat. Commun. 2016; 7: 13433
- 63 Yu Y, Wang C, Wang L, Sun C.-L, Boulatov R, Widenhoefer RA, Craig SL. Chem. Sci. 2021; 12: 11130
- 64 Kaupp G. CrystEngComm 2009; 11: 388