Synlett 2022; 33(09): 851-862
DOI: 10.1055/a-1710-5656
account
Mechanochemistry

The Contributions of Model Studies for Fundamental Understanding of Polymer Mechanochemistry

a   Department of Chemistry, University of Liverpool, Crown St., Liverpool, L69 7ZD, UK
,
a   Department of Chemistry, University of Liverpool, Crown St., Liverpool, L69 7ZD, UK
b   State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. of China
› Author Affiliations
The authors thank the funders that supported their work in mechanochemistry in the past decade, particularly the US National Science Foundation, the US Air Force, the Petroleum Research Fund of the American Chemical Society, the UK Engineering and Physical Sciences Research Council, the Royal Society, the Newton Fund, the University of Liverpool and Michelin.


Abstract

The exciting field of polymer mechanochemistry has made great empirical progress in discovering reactions in which a stretching force accelerates scission of strained bonds using single molecule force spectroscopy and ultrasonication experiments. Understanding why these reactions happen, i.e., the fundamental physical processes that govern coupling of macroscopic motion to chemical reactions, as well as discovering other patterns of mechanochemical reactivity require complementary techniques, which permit a much more detailed characterization of reaction mechanisms and the distribution of force in reacting molecules than are achievable in SMFS or ultrasonication. A molecular force probe allows the specific pattern of molecular strain that is responsible for localized reactions in stretched polymers to be reproduced accurately in non-polymeric substrates using molecular design rather than atomistically intractable collective motions of millions of atoms comprising macroscopic motion. In this review, we highlight the necessary features of a useful molecular force probe and describe their realization in stiff stilbene macrocycles. We describe how studying these macrocycles using classical tools of physical organic chemistry has allowed detailed characterizations of mechanochemical reactivity, explain some of the most unexpected insights enabled by these probes, and speculate how they may guide the next stage of mechanochemistry.



Publication History

Received: 25 October 2021

Accepted after revision: 01 December 2021

Accepted Manuscript online:
01 December 2021

Article published online:
10 January 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany