Synthesis 2022; 54(09): 2165-2174 DOI: 10.1055/a-1710-7256
Catalytic Amidomethylative [2+2+2] Cycloaddition of Formaldimine and Styrenes toward N -Heterocycles
Hetti Handi Chaminda Lakmal‡
,
Jacob Istre‡
,
Xiaolin Qian
,
,
Henry U. Valle
,
Xue Xu∗
,
We are grateful for financial support from the National Science Foundation (CAREER: CHE-1945425), the Office of Research and Economic Development, Mississippi State University, and the Department of Chemistry, Mississippi State University.
This paper is dedicated to the 20th anniversary of the Professor Peter Zhang group.
Abstract
Chemo-switchable catalytic [2+2+2] cycloaddition of alkenes with formaldimines is reported. Bis(tosylamido)methane (BTM) and 1,2-ditosyl-1,2-diazetidine (DTD), two bench-stable precursors for highly reactive tosylformaldimine, have been identified to be effective. BTM worked as a selective releaser of the formaldimine for catalytic [2+2+2] reactions toward hexahydropyrimidine products via a presumable ‘imine–alkene–imine’ addition. A unique catalytic retro-[2+2] reaction of DTD was used and has enabled a proposed ‘imine–alkene–alkene’ pathway with high chemoselectivity for the synthesis of 2,4-diarylpiperidine derivatives. The two alternative processes are catalyzed by the simple and environmentally benign catalysts InCl3 and FeBr2 , respectively.
Key words
[2+2+2] cycloaddition -
aza-Prins reaction -
chemoselectivity -
formaldimines -
N -heterocycles -
diazetidine -
controlled release
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1710-7256.
Supporting Information
Publication History
Received: 15 October 2021
Accepted after revision: 01 December 2021
Accepted Manuscript online: 01 December 2021
Article published online: 27 January 2022
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Campos Rosa JM,
Camacho Quesada ME.
Pharmaceutical Chemistry, 1st ed., Vol. 1. 2017
1b
The Organic Chemistry of Medicinal Agents
.
Renslo A.
McGraw-Hill Education/Medical; New York: 2016
1c
Barber J,
Rostron C,
Denton P.
The Drug Molecule
. Oxford University Press; Oxford: 2015
2
Vitaku E,
Smith DT,
Njardarson JT.
J. Med. Chem. 2014; 57: 10257
3a
Heterocyclic Chemistry in Drug Discovery
.
Li JJ.
John Wiley & Sons; Hoboken: 2013
3b
Joule JA,
Mills K.
Heterocyclic Chemistry at a Glance , 2nd ed. John Wiley & Sons; Chichester/Hoboken: 2013
3c
Pozharskii AF,
Soldatenkov AT,
Katritzky AR.
Heterocycles in Life and Society, An Introduction to Heterocyclic Chemistry, Biochemistry and Applications, 2nd ed. Wiley; Chichester: 2011
3d
Modern Heterocyclic Chemistry , 1st ed.
Alvarez-Builla J,
Vaquero JJ,
Barluenga J.
Wiley-VCH; Weinheim: 2011
3e
Joule JA,
Mills K.
Heterocyclic Chemistry , 5th ed. Wiley; Hoboken: 2009
3f
Comprehensive Heterocyclic Chemistry III , 1st ed.
Katritzky AR,
Ramsden C,
Scriven E,
Taylor R.
Elsevier; Amsterdam/New York: 2008
4
Comprehensive Organic Functional Group Transformations , 1st ed.
Katritzky AR,
Meth-Cohn O,
Rees CW.
Pergamon; Oxford/New York: 1995
5a
Noble A,
Anderson JC.
Chem. Rev. 2013; 113: 2887
5b
Candeias NR,
Montalbano F,
Cal PM. S. D,
Gois PM. P.
Chem. Rev. 2010; 110: 6169
5c
Arrayás RG,
Carretero JC.
Chem. Soc. Rev. 2009; 38: 1940
5d
Verkade JM. M,
van Hemert LJ. C,
Quaedflieg PJ. L. M,
Rutjes FP. J. T.
Chem. Soc. Rev. 2008; 37: 29
6a
Snider BB.
Prins Reactions and Carbonyl, Imine, and Thiocarbonyl Ene Reactions. In Comprehensive Organic Synthesis, 2nd ed., Vol. 2.
Knochel P,
Molander GA.
Elsevier; Amsterdam: 2014: 91
6b
Eftekhari-Sis B,
Zirak M.
Chem. Rev. 2017; 117: 8326
6c
Pastor IM,
Yus M.
Curr. Org. Chem. 2012; 16: 1277
6d
Liu X,
Zheng K,
Feng X.
Synthesis 2014; 46: 2241
6e
Kobayashi S,
Mori Y,
Fossey JS,
Salter MM.
Chem. Rev. 2011; 111: 2626
6f
Oliver LH,
Puls LA,
Tobey SL.
Tetrahedron Lett. 2008; 49: 4636
6g
Juhl K,
Gathergood N,
Jørgensen KA.
Angew. Chem. Int. Ed. 2001; 40: 2995
6h
Dias LC.
Curr. Org. Chem. 2000; 4: 305
7
Bloch R.
Chem. Rev. 1998; 98: 1407
8a
Hoshimoto Y,
Ohata T,
Sasaoka Y,
Ohashi M,
Ogoshi S.
J. Am. Chem. Soc. 2014; 136: 15877
8b
Zhao P,
Wang F,
Han K,
Li X.
Org. Lett. 2012; 14: 5506
8c
Zhou C.-Y,
Zhu S.-F,
Wang L.-X,
Zhou Q.-L.
J. Am. Chem. Soc. 2010; 132: 10955
8d
Skucas E,
Kong JR,
Krische MJ.
J. Am. Chem. Soc. 2007; 129: 7242
8e
Ngai M.-Y,
Barchuk A,
Krische MJ.
J. Am. Chem. Soc. 2007; 129: 12644
8f
Moslin RM,
Miller-Moslin K,
Jamison TF.
Chem. Commun. 2007; 4441
8g
Barchuk A,
Ngai M.-Y,
Krische MJ.
J. Am. Chem. Soc. 2007; 129: 8432
8h
Kong J.-R,
Cho C.-W,
Krische MJ.
J. Am. Chem. Soc. 2005; 127: 11269
8i
Patel SJ,
Jamison TF.
Angew. Chem. Int. Ed. 2004; 43: 3941
8j
Patel SJ,
Jamison TF.
Angew. Chem. Int. Ed. 2003; 42: 1364
9
Reichard HA,
Micalizio GC.
Chem. Sci. 2011; 2: 573
10a
Williams BM,
Trauner D.
Angew. Chem. Int. Ed. 2016; 55: 2191
10b
Ochi Y,
Yokoshima S,
Fukuyama T.
Org. Lett. 2016; 18: 1494
10c
Bosque I,
Gonzalez-Gomez JC,
Loza MI,
Brea J.
J. Org. Chem. 2014; 79: 3982
10d
Bosque I,
González-Gómez JC,
Guijarro A,
Foubelo F,
Yus M.
J. Org. Chem. 2012; 77: 10340
10e
Rouchaud A,
Braekman JC.
Eur. J. Org. Chem. 2009; 2666
10f
Cao MM,
Zhang Y,
Huang SD,
Di YT,
Peng ZG,
Jiang JD,
Yuan CM,
Chen DZ,
Li SL,
He HP,
Hao XJ.
J. Nat. Prod. 2015; 78: 2609
10g
Tulyaganov TS,
Nazarov OM.
Chem. Nat. Compd. 2000; 36: 393
10h
Drandarov K,
Guggisberg A,
Hesse M.
Helv. Chim. Acta 1999; 82: 229
10i
Satzinger G,
Herrmann W,
Zimmermann F.
Hexetidine
. In
Analytical Profiles of Drug Substances , Vol. 7.
Florey H.
Academic Press; San Diego: 1978: 277-295
11a
Horvath D.
J. Med. Chem. 1997; 40: 2412
11b
Khan MS. Y,
Gupta M.
Pharmazie 2002; 57: 377
12a
Trofimov BA,
Shemyakina OA,
Mal’kina AG,
Stepanov AV,
Volostnykh OG,
Ushakov IA,
Vashchenko AV.
Eur. J. Org. Chem. 2016; 5465
12b
Reis MI. P,
Campos VR,
Resende JA. L. C,
Silva FC,
Ferreira VF.
Beilstein J. Org. Chem. 2015; 11: 1235
12c
Palermo V,
Sathicq Á,
Constantieux T,
Rodríguez J,
Vázquez P,
Romanelli G.
Catal. Lett. 2015; 145: 1022
13
Matton P,
Huvelle S,
Haddad M,
Phansavath P,
Ratovelomanana-Vidal V.
Synthesis 2022; 54: 4
14a
Brusoe AT,
Alexanian EJ.
Angew. Chem. Int. Ed. 2011; 50: 6596
14b
Brusoe AT,
Edwankar RV,
Alexanian EJ.
Org. Lett. 2012; 14: 6096
14c
Martin TJ,
Rovis T.
Angew. Chem. Int. Ed. 2013; 52: 5368
14d
Yoshida T,
Tajima Y,
Kobayashi M,
Masutomi K,
Noguchi K,
Tanaka K.
Angew. Chem. Int. Ed. 2015; 54: 8241
14e
Yu RT,
Rovis T.
J. Am. Chem. Soc. 2006; 128: 2782
14f
Zhang K,
Louie J.
J. Org. Chem. 2011; 76: 4686
14g
Domínguez G,
Pérez-Castells J.
Chem. Eur. J. 2016; 22: 6720
15a
Mori N,
Ikeda SI,
Sato Y.
J. Am. Chem. Soc. 1999; 121: 2722
15b
Yoshikawa E,
Yamamoto Y.
Angew. Chem. Int. Ed. 2000; 39: 173
15c
Qiu Z,
Xie Z.
Angew. Chem. Int. Ed. 2009; 48: 5729
15d
Miura T,
Morimoto M,
Murakami M.
J. Am. Chem. Soc. 2010; 132: 15836
15e
Morimoto M,
Nishida Y,
Miura T,
Murakami M.
Chem. Lett. 2013; 42: 550
16a
Eichberg MJ,
Dorta RL,
Grotjahn DB,
Lamottke K,
Schmidt M,
Vollhardt KP. C.
J. Am. Chem. Soc. 2001; 123: 9324
16b
Petit M,
Aubert C,
Malacria M.
Org. Lett. 2004; 6: 3937
16c
Hilt G,
Paul A,
Harms K.
J. Org. Chem. 2008; 73: 5187
17a
Hoberg H,
Bärhausen D,
Mynott R,
Schroth G.
J. Organomet. Chem. 1991; 410: 117
17b
Hoberg H,
Guhl D.
J. Organomet. Chem. 1989; 375: 245
17c
Amatore M,
Aubert C.
Eur. J. Org. Chem. 2015; 265
17d
Domínguez G,
Pérez-Castells J.
Chem. Soc. Rev. 2011; 40: 3430
17e
Galan BR,
Rovis T.
Angew. Chem. Int. Ed. 2009; 48: 2830
17f
Chopade PR,
Louie J.
Adv. Synth. Catal. 2006; 348: 2307
18
Zhou H,
Chaminda Lakmal HH,
Baine JM,
Valle HU,
Xu X,
Cui X.
Chem. Sci. 2017; 8: 6520
19a
Katamura T,
Shimizu T,
Mutoh Y,
Saito S.
Org. Lett. 2017; 19: 266
19b
Daniels BE,
Ni J,
Reisman SE.
Angew. Chem. Int. Ed. 2016; 55: 3398
19c
Barbero A,
Diez-Varga A,
Pulido FJ,
González-Ortega A.
Org. Lett. 2016; 18: 1972
19d
Kaphan DM,
Toste FD,
Bergman RG,
Raymond KN.
J. Am. Chem. Soc. 2015; 137: 9202
19e
Olier C,
Kaafarani M,
Gastaldi S,
Bertrand MP.
Tetrahedron 2010; 66: 413
19f
Dobbs AP,
Guesné SJ. J,
Parker RJ,
Skidmore J,
Stephenson RA,
Hursthouse MB.
Org. Biomol. Chem. 2010; 8: 1064
20
Subba Reddy BV,
Nair PN,
Antony A,
Lalli C,
Grée R.
Eur. J. Org. Chem. 2017; 1805
21
Kinoshita H,
Ingham OJ,
Ong WW,
Beeler AB,
Porco JA.
J. Am. Chem. Soc. 2010; 132: 6412
22
Li Z.-Y,
Chaminda Lakmal HH,
Cui X.
Org. Lett. 2019; 21: 3735
23
Qian X,
Zhou H,
Chaminda Lakmal HH,
Lucore J,
Wang X,
Valle HU,
Donnadieu B,
Xu X,
Cui X.
ACS Catal. 2020; 10: 10627
24
Chaminda Lakmal HH,
Xu JX,
Xu X,
Ahmed B,
Fong C,
Szalda DJ,
Ramig K,
Sygula A,
Webster CE,
Zhang D,
Cui X.
J. Org. Chem. 2018; 83: 9497