Subscribe to RSS
DOI: 10.1055/a-1717-1959
Fetal Development of the Orbit
Die fetale Entwicklung der OrbitaAbstract
Human prenatal development is divided into an embryonic period and a fetal period. Intense organogenetic activity occurs in the embryonic period of prenatal life, while the fetal period is marked by less intense changes. Knowledge of the embryology of the orbit not only allows insights into how normal variations in the orbital structure arise but also provides an understanding of how congenital deformities occur when normal orbital development goes awry. In order to explore our understanding of the developmental anatomy of the orbit during the fetal period of prenatal life, the authors have summarized the major milestones in orbital morphogenesis, a temporally precise and morphogenetically intricate process. This process can be considered as an anatomic series of complex, well-orchestrated changes in morphology as well as a series of complex biochemical and molecular events that coordinate and control the anatomic development. Identifying and linking signaling pathways and regulatory genes linked with normal orbital morphogenesis is a crucial step to offer patients with chronic or incurable orbital diseases effective treatment options in the future.
Zusammenfassung
Die pränatale Entwicklung des Menschen wird in eine Embryonalperiode und eine Fetalperiode unterteilt. Das Wissen über die fetale Entwicklung der Orbita ermöglicht nicht nur Einblicke in die Entstehung normaler Variationen in der Orbitastruktur, sondern liefert auch ein Verständnis dafür, wie angeborene Missbildungen und Anomalien auftreten, wenn die normale Orbitalentwicklung fehlschlägt. Die Autoren haben die Meilensteine in der Orbitalmorphogenese, einem zeitlich genauen und morphogenetisch komplizierten Prozess, zusammengefasst. Dieser Prozess kann als anatomische Reihe komplexer, gut koordinierter Veränderungen der Morphologie sowie als eine Reihe komplexer biochemischer und molekularer Ereignisse betrachtet werden, die die anatomische Entwicklung koordinieren und kontrollieren. Die Identifizierung und Verknüpfung von Signalwegen und regulatorischen Genen, die mit einer normalen orbitalen Morphogenese verbunden sind, ist ein entscheidender Schritt, um Patienten mit chronischen oder unheilbaren Erkrankungen der Orbita in Zukunft wirksame Behandlungsoptionen anbieten zu können.
Publication History
Received: 08 September 2021
Accepted: 07 December 2021
Article published online:
04 February 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Burdi AR, Lawton TJ, Grosslight J. Prenatal pattern emergence in early human facial development. Cleft Palate J 1988; 25: 8-15
- 2 Sevel D. The origins and insertions of the extraocular muscles: development, histologic features, and clinical significance. Trans Am Ophthalmol Soc 1986; 84: 488-526
- 3 Koornneef L. The development of the connective tissue in the human orbit. Acta Morphol Neerl Scand 1976; 14: 263-290
- 4 Muller F, OʼRahilly R. The initial appearance of the cranial nerves and related neuronal migration in staged human embryos. Cells Tissues Organs 2011; 193: 215-238
- 5 Lee VM, Sechrist JW, Luetolf S. et al. Both neural crest and placode contribute to the ciliary ganglion and oculomotor nerve. Dev Biol 2003; 263: 176-190
- 6 Poissonnet CM, Burdi AR, Garn SM. The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum Dev 1984; 10: 1-11
- 7 Tseng YH, Cypess AM, Kahn CR. Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov 2010; 9: 465-482
- 8 Korn BS, Kikkawa DO, Hicok KC. Identification and characterization of adult stem cells from human orbital adipose tissue. Ophthalmic Plast Reconstr Surg 2009; 25: 27-32
- 9 Denis D, Burguiere O, Burillon C. A biometric study of the eye, orbit, and face in 205 normal human fetuses. Invest Ophthalmol Vis Sci 1998; 39: 2232-2238
- 10 Denis D, Burguiere O, Oudahi F. et al. Measurement of facial growth in the human fetus. Graefes Arch Clin Exp Ophthalmol 1995; 233: 756-765
- 11 Laestadius ND, Aase JM, Smith DW. Normal inner canthal and outer orbital dimensions. J Pediatr 1969; 74: 465-468
- 12 Govsa F, Kayalioglu G, Erturk M. et al. The superior orbital fissure and its contents. Surg Radiol Anat 1999; 21: 181-185
- 13 Hayreh S. Orbital vascular anatomy. Eye (Lond) 2006; 20: 1130-1144
- 14 Diamond MK. Homologies of the meningeal-orbital arteries of humans: a reappraisal. J Anat 1991; 178: 223-241
- 15 Louw L. Different ophthalmic artery origins: Embryology and clinical significance. Clin Anat 2015; 28: 576-583
- 16 Tawfik HA, Habib MA. Intraorbital false (thrombosed) aneurysm of the meningolacrimal branch of the middle meningeal artery: a case report and an appraisal of anatomy. Ophthalmic Plast Reconstr Surg 2011; 27: 387-390
- 17 Catala M. [Embryology of the sphenoid bone]. J Neuroradiol 2003; 30: 196-200
- 18 Captier G, Cristol R, Montoya P. et al. Prenatal organization and morphogenesis of the sphenofrontal suture in humans. Cells Tissues Organs 2003; 175: 98-104
- 19 Rodriguez Vazquez JF, Mérida Velasco JR, Jiménez Collado J. Orbital muscle of Müller: observations on human fetuses measuring 35–150 mm. Acta Anat (Basel) 1990; 139: 300-303
- 20 Froelich S, Aziz KA, van Loveren H, Keller JT. The transition between the cavernous sinus and orbit. In: Dolenc VV, Rogers L. eds. Cavernous sinus. Vienna: Springer; 2009: 27-33
- 21 Barishak YR. Embryology of the eye and its adnexae. Dev Ophthalmol 1992; 24: 1-142
- 22 Sevel D. Ptosis and underaction of the superior rectus muscle. Ophthalmology 1984; 91: 1080-1085
- 23 Packer AJ, Bienfang DC. Aberrant regeneration involving the oculomotor and abducens nerves. Ophthalmologica 1984; 189: 80-85
- 24 Saint-Geniez M, DʼAmore PA. Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol 2004; 48: 1045-1058
- 25 de la Cuadra-Blanco C, Peces-Pena MD, Merida-Velasco JR. Morphogenesis of the human lacrimal gland. J Anat 2003; 203: 531-536
- 26 Haas A, Weiglein A, Faschinger C. et al. Fetal development of the human orbit. Graefes Arch Clin Exp Ophthalmol 1993; 231: 217-220
- 27 Padget DH. The cranial venous system in man in reference to development, adult configuration, and relation to the arteries. Am J Anat 1956; 98: 307-355
- 28 Goldstein I, Tamir A, Zimmer EZ. et al. Growth of the fetal orbit and lens in normal pregnancies. Ultrasound Obstet Gynecol 1998; 12: 175-179
- 29 Katori Y, Rodriguez-Vazquez JF, Kawase T. et al. Early fetal development of hard tissue pulleys for the human superior oblique and tensor veli palatini muscles. Ann Anat 2011; 193: 127-133
- 30 Avgitidou G, Koch K, Cursiefen C. et al. Current aspects of eyelid, lacrimal and orbital surgery in childhood. Ophthalmologe 2015; 112: 102-109
- 31 Osanai H, Abe S, Rodriguez-Vazquez J. et al. Human orbital muscle: a new point of view from the fetal development of extraocular connective tissues. Invest Ophthalmol Vis Sci 2011; 52: 1501-1506
- 32 Zhang Q, Wang H, Udagawa J. et al. Morphological and morphometric study on sphenoid and basioccipital ossification in normal human fetuses. Congenit Anom (Kyoto) 2011; 51: 138-148
- 33 Dutton JJ. Atlas of clinical and surgical orbital anatomy. JAMA 2012; 307: 2439
- 34 Berger AJ, Kahn D. Growth and development of the orbit. Oral Maxillofac Surg Clin North Am 2012; 24: 545-555
- 35 Zimbelmann M, Neppert B, Piria R. et al. Treatment and management of orbital tumors. Ophthalmologe 2021; 118: 1004-1011
- 36 Jonas RA, Rokohl AC, Kakkassery V. et al. Diagnostics of benign and malignant tumors of the orbit. Ophthalmologe 2021; 118: 987-994
- 37 Provis JM, van Driel D, Billson FA. et al. Human fetal optic nerve: overproduction and elimination of retinal axons during development. J Comp Neurol 1985; 238: 92-100
- 38 Dutton JJ. Atlas of Clinical and Surgical Orbital Anatomy. China: Elsevier Health Sciences; 2011
- 39 Hill M. Brief timeline of historical developments on the eye and its embryology. Accessed September 28, 2017 at: https://embryology.med.unsw.edu.au/embryology/index.php/2012_Group_Project_1%23cite_ref-83
- 40 Koornneef L. Eyelid and orbital fascial attachments and their clinical significance. Eye (Lond) 1988; 2: 130-134
- 41 Koornneef L, Los J. A new anatomical approach to the human orbit. Mod Probl Ophthalmol 1975; 14: 49-56
- 42 Maglio VJ. Origin and evolution of the Elephantidae. Trans Am Philos Soc 1973; 63: 1-149
- 43 Kronish JW, Gonnering RS, Dortzbach RK. et al. The pathophysiology of the anophthalmic socket. Part I. Analysis of orbital blood flow. Ophthalmic Plast Reconstr Surg 1990; 6: 77-87
- 44 Piniara A, Georgalas C. 4 – Surgical Anatomy of the Orbit, Including the Intraconal Space. In: Sindwani R, ed. Endoscopic Surgery of the Orbit. Philadelphia: Elsevier; 2021: 18-27
- 45 Birnholz JC. Ultrasonic fetal ophthalmology. Early Hum Dev 1985; 12: 199-209
- 46 Tawfik HA, Dutton JJ. Embryologic and fetal development of the human orbit. Ophthalmic Plast Reconstr Surg 2018; 34: 405-421
- 47 Lee KJ. Essential Otolaryngology: Head & Neck Surgery. New York: McGraw-Hill Publishing; 2012
- 48 Koltai PJ, Amjad I, Meyer D. et al. Orbital fractures in children. Arch Otolaryngol Head Neck Surg 1995; 121: 1375-1379
- 49 de Haan AB, Willekens B, Klooster J. et al. The prenatal development of the human orbit. Strabismus 2006; 14: 51-56
- 50 Ozkagnici A, Buyukmumcu M, Zengin N. et al. Ocular and periorbital anthropometric measurements in term Turkish newborns. Surg Radiol Anat 2001; 23: 321-324
- 51 Eustis HS, Guthrie ME. Postnatal development. In: Wright KW, Spiegel PH. eds. Pediatric ophthalmology and strabismus. New York: Springer; 2003: 39-53
- 52 Chau A, Fung K, Pak K. et al. Is eye size related to orbit size in human subjects?. Ophthalmic Physiol Opt 2004; 24: 35-40