Subscribe to RSS
DOI: 10.1055/a-1725-8211
Gestörte Geweberegeneration durch entzündliche Prozesse bei Alterung, Seneszenz und degenerativen Erkrankungen – Interaktionen mit dem COVID-19-induzierten Zytokin-Sturm des angeborenen Immunsystems
Impaired Tissue Regeneration Due To Inflammatory Processes Like Aging, Senescence and Degenerative Diseases – Interactions with the COVID-19-Induced Cytokine Storm of the Innate Immune SystemZusammenfassung
Entzündung ist Bestandteil einer jeglichen Geweberegeneration. Verletzung und Schädigung von Geweben - inklusive exogene virale und bakterielle Infektionen - induzieren eine frühe pro-inflammatorische Phase, die durch Aktivierung von residenten und aus dem peripheren Blut und Knochenmark rekrutierten Zellen des angeborenen Immunsystems weiter propagiert wird. Diese Phase dient auch dem Clearing der Umgebung von vorgeschädigten Zellen und cell debris. Um eine erfolgreiche Geweberegeneration zu erreichen ist es essentiell, die Auflösung der Entzündung durch zeitgerechte Einleitung einer anti-inflammatorischen Phase der Geweberegeneration zu ermöglichen. Dieser Phase kann dann die Gewebeneubildung folgen, am Beispiel der Frakturheilung als „Modeling“ bezeichnet. Das schnell gebildete neue Gewebe wird in der letzten Phase der Regeneration an die physikalischen Bedingungen im Gewebeverband angepasst, bei der Frakturheilung „Remodeling“ genannt. Kann die zeitgerechte Auflösung der Entzündung nicht erfolgen, verhindert die persistierende Entzündung das Eintreten in die Phase der Gewebeneubildung und damit die erfolgreiche Regeneration. Es erfolgt dann entweder als „Notlösung“ eine Narbenheilung oder im Falle weiter ausufernder Entzündung eine Zerstörung des Gewebes. Die mit dem Alter sich verschlechternde Regenerationskapazität vieler Gewebe inklusive Knochen, Muskel und Sehnen ist unter anderem eine Folge der subklinischen chronischen Entzündung von Geweben, die Alterung („Inflammaging“) propagiert. Die Entzündung im Mikromillieu involviert neben den gewebe-typischen Zellen und deren adulten Progenitoren auch die Zellen des gewebeeigenen (residenten) angeborenen Immunsystems, allen voran Makrophagen. Auch diese unterliegen Alters-assoziierten Veränderungen wie Zellalterung und eine gesteigerte Suszeptibilität für pro-inflammatorische Überreaktionen. Chronische Inflammation mündet letztlich in die zelluläre Seneszenz, die begleitet ist von einem Seneszenz-assoziierten sekretorischen Phänotyp (SASP) mit hoher Produktion von Interleukinen 1, 6, 8, und anderen Zytokinen. Solange solche Zellen nicht in den geregelten Zelltod gehen, unterhalten sie die chronische Entzündung und damit die Voraussetzungen für insuffiziente Geweberegeneration. Eine COVID-19 Infektion triggert und unterhält identische inflammatorische Mechanismen und induziert zusätzlich Seneszenz. Dies kann in der Summe zu einem Zytokin-Sturm führen, der in einem circulus vitiosus eine zerstörerische Hyperinflammation unterhält und der umso schwerwiegender ausfällt je höher die Vorlast an seneszenten Zellen ist, wie das in den COVID-Risikopopulationen der Fall ist. Deren Zusammensetzung überlappt sehr stark mit unseren Risikopopulationen für degenerative muskuloskelettale Erkrankungen wie Osteoporose und Sarkopenie.
Abstract
Inflammation is a component of any tissue regeneration. Injury and tissue damage - including exogenous viral and bacterial infections - induce an early pro-inflammatory phase, which is further propagated by activation of both resident innate immune cells and cells recruited from peripheral blood and bone marrow. This pro-inflammatory stage is essential for clearance of cellular debris and to induce the regenerative process. However, to achieve successful tissue regeneration, it is essential to allow timely resolution of inflammation by initiation of an anti-inflammatory phase of tissue regeneration. This phase can then be followed by new tissue formation, referred to as “modeling” in the example of fracture healing. The rapidly formed new tissue is adapted to the physical needs in the final phase of regeneration, called “remodeling” in case of fracture healing. If timely resolution of inflammation is missing, persistent inflammation prevents entry into the phase of new tissue formation and thus successful regeneration. Either scar healing occurs as a "stopgap" solution or tissue destruction is initiated.
The deteriorating regenerative capacity of many tissues with age, including bone, muscle and tendon, occurs as a consequence of subclinical chronic inflammation of tissues that propagates aging (“inflammaging”). Inflammation in the micromillieu involves not only tissue-typical cells and their adult progenitors, but also the cells of the tissue’s resident innate immune system, above all macrophages. These are also subject to age-associated changes such as cellular aging and increased susceptibility to pro-inflammatory overreactions. Chronic inflammation ultimately leads to cellular senescence, which is accompanied by a senescence-associated secretory phenotype (SASP) with high production of interleukins 1, 6, 8, and other cytokines. As long as such cells do not enter regulated cell death, they maintain chronic inflammation, setting the stage for insufficient tissue regeneration.
Inflammation can be self-sustaining in certain pathology and, in the worst case, can progress to a state of hyperinflammation that abolishes any regeneration, destroys tissue, and leads to tissue/organ failure. The best known example may be the highly active autoimmune hyperinflammation like in unmanaged rheumatoid arthritis. Infection with COVID-19 can cause a deleterious outcome of the disease with the same mechanism of hyperinflammation of the innate immune system. Here, hyperinflammation may exaggerate relatively independent of viral replication. COVID-19 directly stimulates NFkB-dependent pro-inflammatory secretion and initiates an IL6-dependent vicious circle, which is then amplified via innate immune system cells. COVID-19 also directly stimulates the so-called inflammasome of the cell. The virus also causes cellular senescence in this pro-inflammatory environment. Depending on the preload of senescent cells amenable to overstimulation for cytokine production, the greater the risk of a cytokine storm with a deleterious outcome. People of advanced age and those with chronic diseases accompanied by pro-inflammatory conditions such as severe obesity, diabetes, and arthritis consequently represent the high-risk populations for COVID-19 infection with a severe outcome. Of note, our target population for the treatment of osteoporosis and osteoarthritis meets this profile.
In addition to antiviral therapeutic measures, it is equally important to address the mechanisms of hyperinflammation that result from, among other causes, the large preload and the additional senescent cells caused by COVID-19. We obviously have parallels that lie in the pathogenesis of tissue degeneration. It has been shown in animal models that osteoporosis responds to treatment with senolytics, and a clinical trial is underway. Severe COVID-19 infection was also significantly ameliorated by senolytics in animal models. Overall, it is of importance for physicians active in osteology to understand the interrelationships in the development of the high risk of severe COVID-19 disease in our elderly patient cohorts, and also to consider the consequences of severe COVID-19 disease. We also urgently need to pay attention to what e. g. long-covid disease means for existing and emerging musculoskeletal conditions such as osteoporosis and sarcopenia due to prolonged absolute and relative immobilization during the acute and rehabilitation phases.
Schlüsselwörter
Entzündung - Gewebe-Regeneration - Osteoporose - Arthrose - COVID19-induzierter Zytokin-SturmKey words
Inflammation - tissue regeneration - osteoporosis - osteoarthritis - COVID19-induced cytokine stormPublication History
Received: 22 October 2021
Received: 09 December 2021
Accepted: 17 December 2021
Article published online:
21 February 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Cavaillon JM. Once upon a time, inflammation. J Venom Anim Toxins Incl Trop Dis 2021; 27: e20200147
- 2 Bassat E, Tanaka EM. The cellular and signaling dynamics of salamander limb regeneration. Curr Opin Cell Biol 2021; 73: 117-123
- 3 Yun MH. Salamander Insights Into Ageing and Rejuvenation. Front Cell Dev Biol 2021; 9: 689062
- 4 Zhu G, Zhang T, Chen M. et al. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021; 6: 4110-4140
- 5 Wildemann B, Ignatius A, Leung F. et al. Non-union bone fractures. Nat Rev Dis Primers 2021; 7: 57
- 6 Herrmann M, Stanic B, Hildebrand M. et al. In vitro simulation of the early proinflammatory phase in fracture healing reveals strong immunomodulatory effects of CD146-positive mesenchymal stromal cells. J Tissue Eng Regen Med 2019; 13: 1466-1481
- 7 Sharma D, Zhao F. Updates on clinical trials evaluating the regenerative potential of allogenic mesenchymal stem cells in COVID-19. NPJ Regen Med 2021; 6: 37
- 8 Ebert R, Benisch P, Krug M. et al. Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells. Stem Cell Res 2015; 15: 231-239
- 9 Zhao YJ, Gao ZC, He XJ. et al. The let-7f-5p-Nme4 pathway mediates tumor necrosis factor alpha-induced impairment in osteogenesis of bone marrow-derived mesenchymal stem cells. Biochem Cell Biol 2021; 99: 488-498
- 10 Lackington WA, Gomez-Sierra MA, Gonzalez-Vazquez A. et al. Non-viral Gene Delivery of Interleukin-1 Receptor Antagonist Using Collagen-Hydroxyapatite Scaffold Protects Rat BM-MSCs From IL-1beta-Mediated Inhibition of Osteogenesis. Front Bioeng Biotechnol 2020; 8: 582012
- 11 Liu Y, Wang L, Kikuiri T. et al. Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha. Nat Med 2011; 17: 1594-1601
- 12 Reinke S, Geissler S, Taylor WR. et al. Terminally differentiated CD8(+) T cells negatively affect bone regeneration in humans. Sci Transl Med 2013; 5: 177ra136
- 13 Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol 2021; doi:10.1016/j.semcdb.2021.05.014
- 14 Panigrahy D, Gilligan MM, Serhan CN. et al. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol Ther 2021; 227: 107879
- 15 Maruyama M, Rhee C, Utsunomiya T. et al. Modulation of the Inflammatory Response and Bone Healing. Front Endocrinol (Lausanne) 2020; 11: 386
- 16 Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest 2018; 128: 2657-2669
- 17 Hong S, Lu Y. Omega-3 fatty acid-derived resolvins and protectins in inflammation resolution and leukocyte functions: targeting novel lipid mediator pathways in mitigation of acute kidney injury. Front Immunol 2013; 4: 13
- 18 Jaen RI, Sanchez-Garcia S, Fernandez-Velasco M. et al. Resolution-Based Therapies: The Potential of Lipoxins to Treat Human Diseases. Front Immunol 2021; 12: 658840
- 19 Wang G, Cao K, Liu K. et al. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death Differ 2018; 25: 1209-1223
- 20 Patocka J, Kuca K, Oleksak P. et al. Rapamycin: Drug Repurposing in SARS-CoV-2 Infection. Pharmaceuticals (Basel) 2021; 14
- 21 Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications. Biomaterials 2021; 277: 121114
- 22 El Kholy K, Freire M, Chen T. et al. Resolvin E1 Promotes Bone Preservation Under Inflammatory Conditions. Front Immunol 2018; 9: 1300
- 23 Graser S, Liedtke D, Jakob F. TNAP as a New Player in Chronic Inflammatory Conditions and Metabolism. Int J Mol Sci 2021; 22
- 24 Borges PA, Waclawiak I, Georgii JL. et al. Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y12 Receptor Activation. Front Immunol 2021; 12: 651740
- 25 Liu W, Zhang L, Xuan K. et al. Alpl prevents bone ageing sensitivity by specifically regulating senescence and differentiation in mesenchymal stem cells. Bone Res 2018; 6: 27
- 26 Wang J, Takemura N, Saitoh T. Macrophage Response Driven by Extracellular ATP. Biol Pharm Bull 2021; 44: 599-604
- 27 Yang Q, Xu HR, Xiang SY. et al. RCTR1 promotes alveolar fluid clearance by activating alveolar epithelial sodium channels and Na, K-ATPase in LPS-induced acute lung injury. J Pharmacol Exp Ther 2021; doi:10.1124/jpet.121.000712
- 28 Walker KH, Krishnamoorthy N, Bruggemann TR. et al. Protectins PCTR1 and PD1 Reduce Viral Load and Lung Inflammation During Respiratory Syncytial Virus Infection in Mice. Front Immunol 2021; 12: 704427
- 29 Kamel Mohamed SG, Sugiyama E, Shinoda K. et al. Interleukin-4 inhibits RANKL-induced expression of NFATc1 and c-Fos: a possible mechanism for downregulation of osteoclastogenesis. Biochem Biophys Res Commun 2005; 329: 839-845
- 30 Wendler S, Schlundt C, Bucher CH. et al. Immune Modulation to Enhance Bone Healing-A New Concept to Induce Bone Using Prostacyclin to Locally Modulate Immunity. Front Immunol 2019; 10: 713
- 31 Naqvi RA, Gupta M, George A. et al. MicroRNAs in shaping the resolution phase of inflammation. Semin Cell Dev Biol 2021; doi:10.1016/j.semcdb.2021.03.019
- 32 Lee CQE, Kerouanton B, Chothani S. et al. Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity. Nat Commun 2021; 12: 2130
- 33 Ebert R, Weissenberger M, Braun C. et al. Impaired regenerative capacity and senescence-associated secretory phenotype in mesenchymal stromal cells from samples of patients with aseptic joint arthroplasty loosening. J Orthop Res 2021; doi:10.1002/jor.25041
- 34 Lee HJ, Lee WJ, Hwang SC. et al. Chronic inflammation-induced senescence impairs immunomodulatory properties of synovial fluid mesenchymal stem cells in rheumatoid arthritis. Stem Cell Res Ther 2021; 12: 502
- 35 Jiang N, An J, Yang K. et al. NLRP3 Inflammasome: A New Target for Prevention and Control of Osteoporosis?. Front Endocrinol (Lausanne) 2021; 12: 752546
- 36 Khosla S, Samakkarnthai P, Monroe DG. et al. Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat Rev Endocrinol 2021; 17: 685-697
- 37 Jenkins SJ, Allen JE. The expanding world of tissue-resident macrophages. Eur J Immunol 2021; 51: 1882-1896
- 38 Ping J, Zhou C, Dong Y. et al. Modulating immune microenvironment during bone repair using biomaterials: Focusing on the role of macrophages. Mol Immunol 2021; 138: 110-120
- 39 Qiao W, Xie H, Fang J. et al. Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials 2021; 276: 121038
- 40 Li Z, Wang Y, Li S. et al. Exosomes Derived From M2 Macrophages Facilitate Osteogenesis and Reduce Adipogenesis of BMSCs. Front Endocrinol (Lausanne) 2021; 12: 680328
- 41 Shin RL, Lee CW, Shen OY. et al. The Crosstalk between Mesenchymal Stem Cells and Macrophages in Bone Regeneration: A Systematic Review. Stem Cells Int 2021; 2021: 8835156
- 42 Dort J, Fabre P, Molina T. et al. Macrophages Are Key Regulators of Stem Cells during Skeletal Muscle Regeneration and Diseases. Stem Cells Int 2019; 2019: 4761427
- 43 Panci G, Chazaud B. Inflammation during post-injury skeletal muscle regeneration. Semin Cell Dev Biol 2021; doi:10.1016/j.semcdb.2021.05.031
- 44 Knoll R, Schultze JL, Schulte-Schrepping J. Monocytes and Macrophages in COVID-19. Front Immunol 2021; 12: 720109
- 45 Melvin WJ, Audu CO, Davis FM. et al. Coronavirus induces diabetic macrophage-mediated inflammation via SETDB2. Proc Natl Acad Sci U S A 2021; 118
- 46 Martinez FO, Combes TW, Orsenigo F. et al. Monocyte activation in systemic Covid-19 infection: Assay and rationale. EBioMedicine 2020; 59: 102964
- 47 Gilani SJ, Bin-Jumah MN, Nadeem MS. et al. Vitamin D attenuates COVID-19 complications via modulation of proinflammatory cytokines, antiviral proteins, and autophagy. Expert Rev Anti Infect Ther 2021; 1-11 doi:10.1080/14787210.2021.1941871
- 48 Ben-Eltriki M, Hopefl R, Wright JM. et al. Association between Vitamin D Status and Risk of Developing Severe COVID-19 Infection: A Meta-Analysis of Observational Studies. J Am Coll Nutr 2021; 1-11 doi:10.1080/07315724.2021.1951891
- 49 Neidleman J, Luo X, Frouard J. et al. SARS-CoV-2-specific T cells exhibit unique features reflecting robust helper function, lack of terminal differentiation, and high proliferative potential. bioRxiv 2020; doi:10.1101/2020.06.08.138826
- 50 Adamo S, Chevrier S, Cervia C. et al. Profound dysregulation of T cell homeostasis and function in patients with severe COVID-19. Allergy 2021; 76: 2866-2881
- 51 Carrasco E, Gomez de Las Heras MM, Gabande-Rodriguez E. et al. The role of T cells in age-related diseases. Nat Rev Immunol 2021; doi:10.1038/s41577-021-00557-4
- 52 Budamagunta V, Foster TC, Zhou D. Cellular senescence in lymphoid organs and immunosenescence. Aging (Albany NY) 2021; 13: 19920-19941
- 53 Tan Q, Liang N, Zhang X. et al. Dynamic Aging: Channeled Through Microenvironment. Front Physiol 2021; 12: 702276
- 54 Gassen NC, Papies J, Bajaj T. et al. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun 2021; 12: 3818
- 55 Kitada M, Koya D. Autophagy in metabolic disease and ageing. Nat Rev Endocrinol 2021; doi:10.1038/s41574-021-00551-9
- 56 Wan M, Gray-Gaillard EF, Elisseeff JH. Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res 2021; 9: 41
- 57 Lagoumtzi SM, Chondrogianni N. Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic Biol Med 2021; 171: 169-190
- 58 Doolittle ML, Monroe DG, Farr JN. et al. The role of senolytics in osteoporosis and other skeletal pathologies. Mech Ageing Dev 2021; 199: 111565
- 59 Hojyo S, Uchida M, Tanaka K. et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen 2020; 40: 37
- 60 Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell 2021; 184: 1671-1692
- 61 Silva-Lagos LA, Pillay J, van Meurs M. et al. DAMPening COVID-19 Severity by Attenuating Danger Signals. Front Immunol 2021; 12: 720192
- 62 Gandhi RT, Lynch JB, Del Rio C. Mild or Moderate Covid-19. N Engl J Med 2020; 383: 1757-1766
- 63 Lee S, Yu Y, Trimpert J. et al. Virus-induced senescence is driver and therapeutic target in COVID-19. Nature 2021; doi:10.1038/s41586-021-03995-1
- 64 Meyer K, Patra T. Vijayamahantesh et al. SARS-CoV-2 Spike Protein Induces Paracrine Senescence and Leukocyte Adhesion in Endothelial Cells. J Virol 2021; 95: e0079421
- 65 Ono T, Hayashi M, Sasaki F. et al. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen 2020; 40: 2
- 66 Camell CD, Yousefzadeh MJ, Zhu Y. et al. Senolytics reduce coronavirus-related mortality in old mice. Science 2021; 373
- 67 Wang X, Li W, Lu S. et al. Modulation of the Wound Healing through Noncoding RNA Interplay and GSK-3beta/NF-kappaB Signaling Interaction. Int J Genomics 2021; 2021: 9709290
- 68 Aitcheson SM, Frentiu FD, Hurn SE. et al. Skin Wound Healing: Normal Macrophage Function and Macrophage Dysfunction in Diabetic Wounds. Molecules 2021; 26
- 69 Painter JD, Akbari O. Type 2 Innate Lymphoid Cells: Protectors in Type 2 Diabetes. Front Immunol 2021; 12: 727008
- 70 Sellegounder D, Zafari P, Rajabinejad M. et al. Advanced glycation end products (AGEs) and its receptor, RAGE, modulate age-dependent COVID-19 morbidity and mortality. A review and hypothesis. Int Immunopharmacol 2021; 98: 107806
- 71 Wautier JL, Wautier MP. Endothelial Cell Participation in Inflammatory Reaction. Int J Mol Sci 2021; 22
- 72 Zazzara MB, Penfold RS, Roberts AL. et al. Probable delirium is a presenting symptom of COVID-19 in frail, older adults: a cohort study of 322 hospitalised and 535 community-based older adults. Age Ageing 2021; 50: 40-48
- 73 Sudre CH, Murray B, Varsavsky T. et al. Attributes and predictors of long COVID. Nat Med 2021; 27: 626-631