Synthesis, Table of Contents Synthesis 2022; 54(17): 3845-3857DOI: 10.1055/a-1742-2005 special topic Special Issue in memory of Prof. Ferenc Fülöp Electrocyclization and Unexpected Reactions of Non-Stabilized α,β:γ,δ-Unsaturated Azomethine Ylides: Experimental and Theoretical Studies István G. Molnár a Servier Research Institute of Medicinal Chemistry, 7 Záhony utca., 1031 Budapest, Hungary , Zoltán Mucsi b Femtonics Research Institute, 59 Tűzoltó utca, 1094 Budapest, Hungary c Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary , Ervin Kovács ∗ b Femtonics Research Institute, 59 Tűzoltó utca, 1094 Budapest, Hungary d Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, 1117 Budapest, Hungary , Miklós Nyerges∗ a Servier Research Institute of Medicinal Chemistry, 7 Záhony utca., 1031 Budapest, Hungary › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract Versatile, two-step syntheses of dihydrodibenzo[c,e]azepines, carbazole derivatives, and other alkaloid-type drug-like scaffolds by in situ generated azomethine ylide-induced intramolecular electrocyclization reaction from commercially available materials are presented. The reaction mechanisms of transition-metal-free carbon–carbon bond formation and the role of the kinetic control, resulting in the good regioselectivity, were confirmed by theoretical calculations. Key words Key wordsalkaloid - azomethine ylide - dihydro-5H-dibenzo[c,e]azepine - electrocyclization - NICS Full Text References References For reviews on 1,5- and 1,7-electrocyclizations of conjugated 1,3-dipoles, see: 1a Nyerges M, Tóth J, Groundwater PW. Synlett 2008; 1269 1b Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2006; 2873 1c Groundwater PW, Nyerges M. Adv. Heterocycl. Chem. 1999; 73: 97 1d Zecchi G. Synthesis 1991; 181 1e Huisgen R. Angew. Chem., Int. Ed. Engl. 1980; 19: 947 1f Taylor EC, Turchi IJ. Chem. Rev. 1979; 79: 181 2a Shun-ichi N, Yasumasa H, Tetsuhiro N. Tetrahedron Lett. 2018; 59: 760 2b Pompeo MM, Cheah JH, Movassaghi M. J. Am. Chem. Soc. 2019; 141: 14411 2c Chaturvedula PV, Mercer SE, Fang H, Han X, Luo G, Dubowchik GM, Poindexter GS. US Pat. Appl. Publ US 20070259851 A1, 2007 2d Nguyen TN. T, Saleem RS. Z, Luderer MJ, Hovde S, Henry RW, Tepe JJ. ACS Chem. Biol. 2012; 7: 172 3a Kanemasa S. Heterocycles 2010; 82: 87 3b Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484 3c Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765 3d Husinec S, Savic V. Tetrahedron: Asymmetry 2005; 16: 2047 3e Najera C, Sansano JM. Curr. Org. Chem. 2003; 7: 1105 3f Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products. Padwa A, Pearson WH. Wiley; New York: 2002 3g Tsuge O, Kanemasa S. Adv. Heterocycl. Chem. 1989; 45: 232 4 Tóth J, Dancsó A, Blaskó G, Tőke L, Groundwater PW, Nyerges M. Tetrahedron 2006; 62: 5725 5 Nyerges M, Virányi A, Tóth J, Blaskó G, Tőke L. Synthesis 2006; 1273 6a Nyerges M, Pintér Á, Virányi A, Bitter I, Tőke L. Tetrahedron Lett. 2005; 46: 377 6b Urbina K, Tresp D, Sipps K, Szostak M. Adv. Synth. Catal. 2021; 363: 2723 7a Grigg R, Thianpatanagul S. J. Chem. Soc., Chem. Commun. 1984; 180 7b Joucla M, Mortier J. J. Chem. Soc., Chem. Commun. 1985; 1566 7c Tsuge O, Kanemasa S, Ohe M, Takenaka S. Bull. Chem. Soc. Jpn. 1987; 60: 4079 8a Frolova EP, Akhvlediani RN, Suvorov NN. Khim. Geterotsikl. Soed. 1982; 10: 1358 8b St-Ruf G, Hieu HT. Arzneim.-Forsch. 1975; 25: 66 8c Buu-Hoi NP, Saint-Ruf G, Deschamps D, Bigot P, Hieu HT. J. Chem. Soc. C 1971; 2606 9 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01 . Gaussian, Inc.; Wallingford CT: 2016 10 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215 11a Tomasi J, Mennucci B, Cammi R. Chem. Rev. 2005; 105: 2999 11b Vivanco S, Lecea B, Arrieta A, Prieto P, Morao I, Linden A, Cossío FP. J. Am. Chem. Soc. 2000; 122: 6078 12 Vivanco S, Lecea B, Arrieta A, Prieto P, Morao I, Linden A, Cossío FP. J. Am. Chem. Soc. 2000; 122: 6078 13 Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR. Chem. Rev. 2005; 105: 3842 14 Barone V, Cossi M. J. Phys. Chem. A 1998; 102: 1995 15a Kovács E, Faigl F, Mucsi Z. J. Org. Chem. 2020; 85: 11226 15b Chiovini B, Pálfi D, Majoros M, Juhász G, Szalay G, Katona G, Szőri M, Frigyesi O, Lukácsné Haveland C, Szabó G, Erdélyi F, Máté Z, Szadai Z, Madarász M, Dékány M, Csizmadia IG, Kovács E, Rózsa B, Mucsi Z. ACS Omega 2021; 6: 15029 15c Kovács E, Cseri L, Jancsó A, Terényi F, Fülöp A, Rózsa B, Galbács G, Mucsi Z. Eur. J. Org. Chem. 2021; 5649 15d Nagy M, Rácz D, Nagy ZL, Nagy T, Fehér PP, Purgel M, Zsuga M, Kéki S. Dyes Pigm. 2016; 133: 445 15e Nagy M, Rácz D, Nagy ZL, Fehér PP, Kalmár J, Fábián I, Kiss A, Zsuga M, Kéki S. Sens. Actuators B: Chem. 2018; 255: 2555 Supplementary Material Supplementary Material Supporting Information