Subscribe to RSS
DOI: 10.1055/a-1742-5254
Cochlea-Implantation: Bestimmung der Cochlear Duct Length (CDL)
Cochlear Implantation: Evaluation of Cochlear Duct Length (CDL)Bei Cochlea-Implantationen gewinnt die personalisierte Versorgung zunehmend an Bedeutung. Die Wahl einer für den individuellen Patienten passenden Elektrode könnte das Sprachverstehen verbessern. Die Messung der cochleären Länge ist dabei wichtig: präoperativ für die Wahl der geeigneten Elektrodenlänge und postoperativ, um die korrekte Elektrodenlage zu kontrollieren und ein „anatomisches“ Fitting der Elektrodenkontakte zu ermöglichen.
Abstract
Personalized care in the context of cochlear implantation is becoming increasingly important. Choosing the right electrode could improve speech understanding. The measurement of the cochlear length plays an important role: preoperatively, in order to select a suitable electrode length; postoperatively, on the one hand to check the correct electrode position, on the other hand to enable anatomically based fitting of the electrode contacts. Of the various possible localizations of the CDL measurements within the cochlear turns, the one on the organ of Corti (CDLOC) is the most frequently used and clinically most important. In the CDL measurement, a direct and indirect evaluation can be distinguished. There is also the possibility of reconstructing and measuring the CDL in 3D and calculating it mathematically, e.g. using spiral equations. In this context, measurements based on radiological imaging are gaining increasing importance. Therefore, if there is the possibility of performing higher-resolution imaging, this should be strived preoperatively in order to enable the most precise possible procedure and thus a good outcome. Otological planning software can help to create an interface between new findings regarding CDL measurement and higher-resolution imaging for an individualized cochlear implantation.
-
Von den verschiedensten möglichen Lokalisationen der CDL-Messung innerhalb der cochleären Windungen wird diejenige am Corti-Organ am häufigsten verwendet und ist klinisch am bedeutendsten.
-
Bei der CDL-Messung lassen sich die direkte und die indirekte Evaluation unterscheiden. Zusätzlich gibt es die Möglichkeit, die CDL in 3D zu rekonstruieren und zu vermessen sowie sie mathematisch z.B. über Spiralgleichungen zu berechnen.
-
Die Längenreihenfolge der CDL lautet CDLSG < CDLOC < CDLBM < CDLLW.
-
Wenn die Möglichkeit zur Durchführung von höher auflösender Bildgebung besteht, sollte diese präoperativ angestrebt werden, um ein möglichst präzises Vorgehen und damit ein optimiertes Ergebnis zu ermöglichen.
-
Eine otologische Planungssoftware kann dazu verwendet werden, präoperativ die individuelle cochleäre Anatomie zu bestimmen und hierauf basierend eine geeignete Elektrode auszuwählen.
-
Eine postoperative Bildgebung sollte im Erwachsenenalter stets durchgeführt werden, um die korrekte Lage und hierbei insbesondere die intracochleäre Lokalisation aller Kontakte zu kontrollieren.
-
Ein anatomisch basiertes Fitting der Cochlea-implantierten Patienten wird das Hörempfinden in Zukunft mit hoher Wahrscheinlichkeit weiter verbessern.
-
Das Wissen über die cochleäre Anatomie wird nicht zuletzt durch immer höher auflösende Bildgebungsmöglichkeiten wie die Synchrotron-Radiation-Phase-Contrast-Bildgebung weiter vorangetrieben werden.
Schlüsselwörter
Cochleäre Längenmessung - otologische Planungs-Software - Flat-Panel Volume CT - hochauflösende BildgebungKeywords
Cochlear Length Measurement - Otological Planning Software - Flat-Panel Volume CT - High Resolution ImagingPublication History
Article published online:
02 May 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Verbist BM, Skinner MW, Cohen LT. et al. Consensus panel on a cochlear coordinate system applicable in histologic, physiologic, and radiologic studies of the human cochlea. Otol Neurotol 2010; 31: 722-730
- 2 Helpard L, Li H, Rohani SA. et al. Three-Dimensional Modeling and Measurement of the Human Cochlear Hook Region: Considerations for Tonotopic Mapping. Otol Neurotol 2021; 42: e658-e665
- 3 Hardy M. The length of the organ of Corti in man. Am J Anat 1938; 62: 291-311
- 4 Kawano A, Seldon HL, Clark GM. Computer-aided three-dimensional reconstruction in human cochlear maps: measurement of the lengths of organ of Corti, outer wall, inner wall, and Rosenthalʼs canal. Ann Otol Rhinol Laryngol 1996; 105: 701-709
- 5 Stakhovskaya O, Sridhar D, Bonham BH. et al. Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. J Assoc Res Otolaryngol 2007; 08: 220-233
- 6 Guild SR. A graphic reconstruction method for the study of the organ of Corti. Anat Record 1921; 22: 140-157
- 7 Ketten DR, Skinner MW, Wang G. et al. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Otol Rhinol Laryngol 1998; 175: 1-16
- 8 Koch RW, Elfarnawany M, Zhu N. et al. Evaluation of Cochlear Duct Length Computations Using Synchrotron Radiation Phase-Contrast Imaging. Otol Neurotol 2017; 38: e92-e99
- 9 Pietsch M, Aguirre Davila L, Erfurt P. et al. Spiral Form of the Human Cochlea Results from Spatial Constraints. Sci Rep 2017; 07: 7500
- 10 Takagi A, Sando I. Computer-aided three-dimensional reconstruction: a method of measuring temporal bone structures including the length of the cochlea. Ann Otol Rhinol Laryngol 1989; 98: 515-522
- 11 Würfel W, Lanfermann H, Lenarz T. et al. Cochlear length determination using Cone Beam Computed Tomography in a clinical setting. Hear Res 2014; 316: 65-72
- 12 Otte J, Schuknecht HF, Kerr AG. Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. The Laryngoscope 1978; 88: 1231-1246
- 13 Walby A. Scala tympani measurement. Ann Otol Rhin Laryngol 1985; 94: 393-397
- 14 Pollak A, Felix H, Schrott A. Methodological aspects of quantitative study of spiral ganglion cells. Acta Otolaryngologica 1987; 104: 37-42
- 15 Erixon E, Högstorp H, Wadin K. et al. Variational anatomy of the human cochlea: implications for cochlear implantation. Otol Neurotol 2009; 30: 14-22
- 16 Erixon E, Rask-Andersen H. How to predict cochlear length before cochlear implantation surgery. Acta Otolaryngologica 2013; 133: 1258-1265
- 17 Lee J, Nadol Jr, Eddington DK. Depth of electrode insertion and postoperative performance in humans with cochlear implants: a histopathologic study. Audiol Neurotol 2010; 15: 323-331
- 18 Escude B, James C, Deguine O. et al. The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurootol 2006; 11 (Suppl. 01) 27-33
- 19 Alexiades G, Dhanasingh A, Jolly C. Method to estimate the complete and two-turn cochlear duct length. Otol Neurotol 2015; 36: 904-907
- 20 Schurzig D, Timm ME, Batsoulis C. et al. A Novel Method for Clinical Cochlear Duct Length Estimation toward Patient-Specific Cochlear Implant Selection. OTO Open 2018; 02
- 21 Sato H, Sando I, Takahashi H. Sexual dimorphism and development of the human cochlea: computer 3-D measurement. Acta Otolaryngologica 1991; 111: 1037-1040
- 22 Meng J, Li S, Zhang F. et al. Cochlear Size and Shape Variability and Implications in Cochlear Implantation Surgery. Otol Neurotol 2016; 37: 1307-1313
- 23 Koch RW, Ladak HM, Elfarnawany M. et al. Measuring cochlear duct length–a historical analysis of methods and results. J Otolaryngol Head Neck Surg 2017; 46: 1-11
- 24 Helpard L, Li H, Rask-Andersen H. et al. Characterization of the human helicotrema: implications for cochlear duct length and frequency mapping. J Otolaryngol Head Neck Surg 2020; 49: 1-7
- 25 Pearl MS, Roy A, Limb C. High-resolution secondary reconstructions with the use of flat panel CT in the clinical assessment of patients with cochlear implants. Am J Neuroradiol 2014; 35: 1202-1208
- 26 Taeger J, Müller-Graff FT, Ilgen L. et al. Cochlear Duct Length Measurements in Computed Tomography and Magnetic Resonance Imaging Using Newly Developed Techniques. OTO Open 2021; 05
- 27 Schendzielorz P, Ilgen L, Mueller-Graff T. et al. Precise Evaluation of the Cochlear Duct Length by Flat-panel Volume Computed Tomography (fpVCT)-Implication of Secondary Reconstructions. Otol Neurotol 2021; 42: e294-e303
- 28 Schendzielorz P, Ilgen L, Müller-Graff FT. et al. Precise evaluation of the postoperative cochlear duct length by flat-panel volume computed tomography – Application of secondary reconstructions. Cochlear Implants Int 2022; 23 (01) 32-42
- 29 Pearce MS, Salotti JA, Little MP. et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380: 499-505
- 30 Niu Y, Wang Z, Liu Y. et al. Radiation dose to the lens using different temporal bone CT scanning protocols. AJNR Am J Neuroradiol 2010; 31: 226-229
- 31 Shore RE, Neriishi K, Nakashima E. Epidemiological studies of cataract risk at low to moderate radiation doses:(not) seeing is believing. Radiation Res 2010; 174: 889-894
- 32 Ehrmann-Müller D, Shehata-Dieler W, Kaulitz S. et al. Cochlear implantation in children without preoperative computed tomography diagnostics. Analysis of procedure and rate of complications. Int J Pediatr Otorhinolaryngol 2020; 138: 110266
- 33 Mertens G, Van Rompaey V, Van de Heyning P. et al. Prediction of the cochlear implant electrode insertion depth: clinical applicability of two analytical cochlear models. Sci Rep 2020; 10: 1-10
- 34 Greenwood DD. A cochlear frequency-position function for several species--29 years later. J Acoust Soc Am 1990; 87: 2592-2605
- 35 Müller-Graff F-T, Ilgen L, Schendzielorz P. et al. Implementation of secondary reconstructions of flat-panel volume computed tomography (fpVCT) and otological planning software for anatomically based cochlear implantation. Eur Arch Otorhinolaryngol 2021;
- 36 Li H, Schart-Morén N, Rohani SA. et al. Synchrotron radiation-based reconstruction of the human spiral ganglion: implications for cochlear implantation. Ear Hearing 2020; 41: 173-181
- 37 Li H, Helpard L, Ekeroot J. et al. Three-dimensional tonotopic mapping of the human cochlea based on synchrotron radiation phase-contrast imaging. Sci Rep 2021; 11: 1-8