Subscribe to RSS
DOI: 10.1055/a-1744-2114
Molekulare Diagnostik und Therapie des Differenzierten Schilddrüsenkarzinoms

Molekulare zielgerichtete Therapien und Immuntherapien revolutionieren die Therapielandschaft des radiojodrefraktären differenzierten Schilddrüsenkarzinoms. Dieser Review fasst alle neuen Entwicklungen bzgl. einer zielgerichteten und effizienten molekularen Diagnostik sowie der verschiedenen Möglichkeiten an molekularen Therapien mit Kinase-Inhibitoren und Immuntherapien zusammen und zeichnet einen Pfad für ein stufenweises, auf den einzelnen Patienten/die einzelne Patientin zugeschnittenes individualisiertes Therapiekonzept.
-
15–20% der differenzierten Schilddrüsenkarzinome benötigen im Laufe der Erkrankung eine Systemtherapie.
-
Klassische Chemotherapien und eine externe Strahlentherapie sind beim radiojodrefraktären Schilddrüsenkarzinom kaum wirksam.
-
In der Erstlinie werden breit wirksame Neoangiogenese-Inhibitoren wie Lenvatinib und Sorafenib eingesetzt.
-
Bei Versagen ist eine gezielte molekulare Diagnostik auf BRAF-Mutationen sowie RET- und NTRK-Fusionen notwendig.
-
Für die Zweitliniensystemtherapie können nach Krankenkassenantrag spezifische Inhibitoren gegen BRAF, RET oder NTRK eingesetzt werden.
-
Alternativ, bei fehlenden spezifischen Mutationen, kann eine Behandlung mit Cabozantinib (zugelassen) oder Immuncheckpoint-Inhibitoren (Krankenkassenantrag) erfolgen.
Schlüsselwörter
Schilddrüsenkarzinom - DTC - Immuntherapie - molekulare Diagnostik - KinaseinhibitorPublication History
Article published online:
03 August 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Ceresini G, Corcione L, Michiara M. et al. Thyroid cancer incidence by histological type and related variants in a mildly iodine-deficient area of Northern Italy, 1998 to 2009. Cancer 2012; 118 (22) 5473-5480
- 2 Morris LG, Sikora AG, Tosteson TD. et al. The increasing incidence of thyroid cancer: the influence of access to care. Thyroid 2013; 23 (07) 885-891
- 3 Nagataki S, Shibata Y, Inoue S. et al. Thyroid diseases among atomic bomb survivors in Nagasaki. JAMA 1994; 272 (05) 364-370
- 4 Cronkite EP, Bond VP, Conard RA. Medical effects of exposure of human beings to fallout radiation from a thermonuclear explosion. Stem Cells 1995; 13 (Suppl. 01) 49-57
- 5 Williams D. Cancer after nuclear fallout: lessons from the Chernobyl accident. Nat Rev Cancer 2002; 2 (07) 543-549
- 6 Duffy BJ, Fitzgerald PJ. Thyroid cancer in childhood and adolescence; a report on 28 cases. Cancer 1950; 3 (06) 1018-1032
- 7 Winship T, Rosvoll RV. Cancer of the thyroid in children. Proc Natl Cancer Conf 1970; 6: 677-681
- 8 Bilimoria KY, Bentrem DJ, Ko CY. et al. Extent of surgery affects survival for papillary thyroid cancer. Ann Surg 2007; 246 (03) 375-381
- 9 Dralle H, Musholt TJ, Schabram J. et al. German Association of Endocrine Surgeons practice guideline for the surgical management of malignant thyroid tumors. Langenbecks Arch Surg 2013; 398 (03) 347-375
- 10 Perros P, Boelaert K, Colley S. et al. Guidelines for the management of thyroid cancer. Clin Endocrinol (Oxf) 2014; 81 (Suppl. 01) 1-122
- 11 Thyroid N, Thyroid C, Cooper DS. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009; 19 (11) 1167-1214
- 12 Lang BH, Ng SH, Lau LL. et al. A systematic review and meta-analysis of prophylactic central neck dissection on short-term locoregional recurrence in papillary thyroid carcinoma after total thyroidectomy. Thyroid 2013; 23 (09) 1087-1098
- 13 Carling T, Carty SE, Ciarleglio MM. et al. American Thyroid Association design and feasibility of a prospective randomized controlled trial of prophylactic central lymph node dissection for papillary thyroid carcinoma. Thyroid 2012; 22 (03) 237-244
- 14 Lorenz K, Niederle B, Steinmuller T. et al. The European Society of Endocrine Surgeons perspective of thyroid cancer surgery: an evidence-based approach. Langenbecks Arch Surg 2014; 399 (02) 135-139
- 15 Dietlein M, Dressler J, Eschner W. et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 3). Nuklearmedizin 2007; 46 (05) 213-219
- 16 Durante C, Haddy N, Baudin E. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006; 91 (08) 2892-2899
- 17 Sabra MM, Dominguez JM, Grewal RK. et al. Clinical outcomes and molecular profile of differentiated thyroid cancers with radioiodine-avid distant metastases. J Clin Endocrinol Metab 2013; 98 (05) E829-836
- 18 Luster M, Clarke SE, Dietlein M. et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008; 35 (10) 1941-1959
- 19 Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014; 159 (03) 676-690
- 20 Ricarte-Filho JC, Ryder M, Chitale DA. et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 2009; 69 (11) 4885-4893
- 21 Yang K, Wang H, Liang Z. et al. BRAFV600E mutation associated with non-radioiodine-avid status in distant metastatic papillary thyroid carcinoma. Clin Nucl Med 2014; 39 (08) 675-679
- 22 Ho AL, Grewal RK, Leboeuf R. et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 2013; 368 (07) 623-632
- 23 Rothenberg SM, Daniels GH, Wirth LJ. Redifferentiation of Iodine-Refractory BRAF V600E-Mutant Metastatic Papillary Thyroid Cancer with Dabrafenib-Response. Clin Cancer Res 2015; 21 (24) 5640-5641
- 24 Huillard O, Tenenbaum F, Clerc J. et al. Restoring Radioiodine Uptake in BRAF V600E-Mutated Papillary Thyroid Cancer. J Endocr Soc 2017; 1 (04) 285-287
- 25 Jaber T, Waguespack SG, Cabanillas ME. et al. Targeted Therapy in Advanced Thyroid Cancer to Resensitize Tumors to Radioactive Iodine. J Clin Endocrinol Metab 2018; 103 (10) 3698-3705
- 26 Dunn LA, Sherman EJ, Baxi SS. et al. Vemurafenib Redifferentiation of BRAF Mutant, RAI-Refractory Thyroid Cancers. J Clin Endocrinol Metab 2019; 104 (05) 1417-1428
- 27 Iravani A, Solomon B, Pattison DA. et al. Mitogen-Activated Protein Kinase Pathway Inhibition for Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer: An Evolving Protocol. Thyroid 2019; 29 (11) 1634-1645
- 28 Stjepanovic N, Capdevila J. Multikinase inhibitors in the treatment of thyroid cancer: specific role of lenvatinib. Biologics 2014; 8: 129-139
- 29 Brose MS, Nutting CM, Jarzab B. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014; 384: 319-328
- 30 Schlumberger M, Tahara M, Wirth LJ. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015; 372 (07) 621-630
- 31 Cabanillas ME, Schlumberger M, Jarzab B. et al. A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: A clinical outcomes and biomarker assessment. Cancer 2015; 121 (16) 2749-2756
- 32 Schlumberger M, Tahara M, Wirth LJ. Lenvatinib in radioiodine-refractory thyroid cancer. N Engl J Med 2015; 372 (19) 1868
- 33 Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer 2014; 14 (03) 173-186
- 34 Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol 2002; 13 (01) 3-16
- 35 Fugazzola L, Pilotti S, Pinchera A. et al. Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res 1995; 55 (23) 5617-5620
- 36 Nikiforov YE, Rowland JM, Bove KE. et al. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 1997; 57 (09) 1690-1694
- 37 Yip L, Nikiforova MN, Yoo JY. et al. Tumor genotype determines phenotype and disease-related outcomes in thyroid cancer: a study of 1510 patients. Ann Surg 2015; 262 (03) 519-525
- 38 Muzza M, Colombo C, Rossi S. et al. Telomerase in differentiated thyroid cancer: promoter mutations, expression and localization. Mol Cell Endocrinol 2015; 399: 288-295
- 39 Brose MS, Cabanillas ME, Cohen EE. et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol 2016; 17 (09) 1272-1282
- 40 Dadu R, Shah K, Busaidy NL. et al. Efficacy and tolerability of vemurafenib in patients with BRAF(V600E) -positive papillary thyroid cancer: M.D. Anderson Cancer Center off label experience. J Clin Endocrinol Metab 2015; 100 (01) E77-81
- 41 Falchook GS, Millward M, Hong D. et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid 2015; 25 (01) 71-77
- 42 Greco A, Borrello MG, Miranda C. et al. Molecular pathology of differentiated thyroid cancer. Q J Nucl Med Mol Imaging 2009; 53 (05) 440-453
- 43 Sugg SL, Ezzat S, Zheng L. et al. Oncogene profile of papillary thyroid carcinoma. Surgery 1999; 125 (01) 46-52
- 44 Mochizuki K, Kondo T, Nakazawa T. et al. RET rearrangements and BRAF mutation in undifferentiated thyroid carcinomas having papillary carcinoma components. Histopathology 2010; 57 (03) 444-450
- 45 Romei C, Ciampi R, Faviana P. et al. BRAFV600E mutation, but not RET/PTC rearrangements, is correlated with a lower expression of both thyroperoxidase and sodium iodide symporter genes in papillary thyroid cancer. Endocr Relat Cancer 2008; 15 (02) 511-520
- 46 Basolo F, Molinaro E, Agate L. et al. RET protein expression has no prognostic impact on the long-term outcome of papillary thyroid carcinoma. Eur J Endocrinol 2001; 145 (05) 599-604
- 47 Wirth LJ, Sherman E, Robinson B. et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N Engl J Med 2020; 383 (09) 825-835
- 48 Subbiah V, Hu MI, Wirth LJ. et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol 2021; 9 (08) 491-501
- 49 Drilon A, Laetsch TW, Kummar S. et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med 2018; 378 (08) 731-739
- 50 Cabanillas ME, Brose MS, Holland J. et al. A phase I study of cabozantinib (XL184) in patients with differentiated thyroid cancer. Thyroid 2014; 24 (10) 1508-1514
- 51 Cabanillas ME, de Souza JA, Geyer S. et al. Cabozantinib As Salvage Therapy for Patients With Tyrosine Kinase Inhibitor-Refractory Differentiated Thyroid Cancer: Results of a Multicenter Phase II International Thyroid Oncology Group Trial. J Clin Oncol 2017; 35 (29) 3315-3321
- 52 Haugen B, French JD, Worden F. et al. Pembrolizumab salvage add-on theapy in patients with radioiodine-refractory (RAIR), progressive differentiated thyroid cancer (DTC) progressing on lenvatinib: Results of a multicenter pahse II international Thyroid Oncology Group Trial. Annals of Oncology 2020; 31