Subscribe to RSS
DOI: 10.1055/a-1765-1615
From Ring-Expansion to Ring-Contraction: Synthesis of γ-Lactones from Cyclobutanols and Relative Stability of Five- and Six-Membered Endoperoxides toward Organic Bases
N. Jamey thanks the Ministère de l’Enseignement Superieur, de la Recherche et de l′Innovation (MESRI) for a PhD fellowship.
Abstract
Cyclobutanols undergo ring expansion with molecular oxygen in the presence of Co(acac)2 to afford 1,2-dioxane-hemiperoxyketals. In the course of acylation, we observed that endoperoxides rearranged into γ-lactone in the presence of triethylamine. Thus, a generalization of this ring contraction through a Kornblum–DeLaMare rearrangement is here reported. Application of this transformation to monosubstituted 1,2-dioxane derivatives also led to 1,4-ketoaldehydes, in proportions depending on the nature of the substituent. These same conditions applied to five-membered dioxolane analogues led to fragmentation instead, through a retro-aldol type process. This study emphasizes the difference of stability of 1,2-dioxane and 1,2-dioxolane against organic bases, 1,2-dioxolanes having proved to be particularly reactive whereas 1,2-dioxanes showed a relative tolerance under these conditions.
Key words
peroxides - ring contraction - ring-expansion - lactones - fragmentations - rearrangement - heterocyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1765-1615.
- Supporting Information
Publication History
Received: 03 December 2021
Accepted after revision: 07 February 2022
Accepted Manuscript online:
07 February 2022
Article published online:
24 March 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Liu D.-Z, Liu J.-K. Nat. Prod. Bioprospect. 2013; 3: 161
- 2 Vera AV, Alexander OT, Olga MM. Curr. Top. Med. Chem. 2019; 19: 1201
- 3 Yaremenko IA, Vil’ VA, Demchuk DV, Terent’ev AO. Beilstein J. Org. Chem. 2016; 12: 1647
- 4 Pinet A, Nguyen LT, Figadère B, Ferrié L. Eur. J. Org. Chem. 2020; 7407
- 5 Ferrié L. In Advances in Heterocyclic Chemistry, Vol. 135. Scriven EF. V, Ramsden CA. Academic Press; Oxford: 2021: 57
- 6 Kulinkovich OG, Astashko DA, Tyvorskii VI, Ilyina NA. Synthesis 2001; 1453
- 7 López MM, Jamey N, Pinet A, Figadère B, Ferrié L. Org. Lett. 2021; 23: 1626
- 8 Pinet A, Figadère B, Ferrié L. Adv. Synth. Catal. 2020; 362: 1190
- 9 Pinet A, Nguyen TL, Bernadat G, Figadère B, Ferrié L. Org. Lett. 2019; 21: 4729
- 10 Jefford CW, Kohmoto S, Rossier J.-C, Boukouvalas J. J. Chem. Soc., Chem. Commun. 1985; 1783
- 11 Snider BB, Shi Z, O’Neil SV, Kreutter KD, Arakaki TL. J. Org. Chem. 1994; 59: 1726
- 12 Hon Y.-S, Lin S.-W, Lu L, Chen Y.-J. Tetrahedron 1995; 51: 5019
- 13 Piotto M, Bourdonneau M, Elbayed K, Wieruszeski J.-M, Lippens G. Magn. Reson. Chem. 2006; 44: 943
- 14 Hölemann A, Reissig H.-U. Synthesis 2004; 1963
- 15 Cossy J, Bargiggia F, BouzBouz S. Org. Lett. 2003; 5: 459
- 16 Mondal K, Mondal B, Pan SC. J. Org. Chem. 2016; 81: 4835
- 17 Sakai N, Horikawa S, Ogiwara Y. RSC Adv. 2016; 6: 81763
- 18 Wang B, Shen Y.-M, Shi Y. J. Org. Chem. 2006; 71: 9519
- 19 Wang J, Huang B, Shi C, Yang C, Xia W. J. Org. Chem. 2018; 83: 9696
- 20 Danheiser RL, Savoca AC. J. Org. Chem. 1985; 50: 2401