Klin Monbl Augenheilkd 2022; 239(04): 523-526
DOI: 10.1055/a-1766-6071
Klinische Studie

Effect of Valsalva Maneuver on Choriocapillary Retinal Microvasculature

Der Effekt des Valsalva-Manövers auf die choriokapilläre retinale Microvaskulatur
1   Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
2   University of Zurich, Zurich, Switzerland
,
Timothy Hamann*
1   Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
,
Sandrine Zweifel
1   Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
2   University of Zurich, Zurich, Switzerland
› Author Affiliations

Abstract

Purpose We aimed to identify and evaluate possible quantitative changes in retinal and choriocapillary blood flow utilizing optical coherence tomography angiography (OCTA) imaging in healthy study subjects during the Valsalva maneuver (VM).

Methods OCTA imaging with a ZEISS PlexElite 9000 on one eye was performed. OCTA images were acquired before VM and 5 seconds after. Images were segmented and underwent projection removal using algorithms supplied by the manufacturer. Analysis of vessel density (VD) and vessel length density (VLD) were performed on superficial (SCP) and deep capillary plexus (DCP) layer slabs using ImageJ. ImageJ was also utilized for analyzing flow voids (FVs) in the choriocapillary slabs.

Results Ten (8 right, 2 left) eyes of 10 (5 male, 5 female) healthy study subjects were included. Pre-VM, -VD, and -VLD were 0.428 (± 0.291) and 17.871 mm−1 (± 2.22 mm−1) in the SCP and 0.423 (± 0.0213) and 23.850 mm−1 (± 1.023 mm−1) in the DCP. Pre-VM and -FV were measured at 19.686 (± 1.959). During VM, VD, and VLD in the SCP were 0.417 (± 0.024) and 17.376 mm−1 (± 2.007 mm−1), and in the DCP, 0.426 (± 0.221) and 23.944 mm−1 (± 1.021 mm−1), respectively. FV post-VM was 20.440 (± 2.062). A paired samples t-test test revealed no significant changes in any of the observed parameters.

Conclusion We did not observe any significant changes in the VD, VLD, or FV. This might be due to autoregulatory processes in the ocular vasculature. Due to the small sample size, confidence intervals are comparatively large. Further study with more probands might yield different results.

Zusammenfassung

Zielsetzung Die Detektion allfälliger quantitativer Veränderungen des retinalen und choriokapillären Blutflusses mittels optischer Kohärenztomografieangiografie (OCTA) bei gesunden Probanden während des Valsalva-Manövers (VM).

Methoden Die OCTA-Bildgebung wurde mit einem ZEISS PlexElite 9000 an einem Auge durchgeführt. Die Aufnahmen erfolgten vor dem VM und 5 Sekunden danach. Die Segmentation erfolgte mittels eines vom Hersteller des Gerätes zur Verfügung gestellten Algorithmus. Die Analyse der Vessel Density (VD) und der Vessel Length Density (VLD) wurde an Segmentationen des oberflächlichen (SCP) und tiefen Kapillarplexus (DCP) mit ImageJ durchgeführt. ImageJ wurde auch für die Analyse von Flow Voids (FVs) in den choriokapillären Segmentationen verwendet.

Ergebnisse Zehn (8 rechts, 2 links) Augen von 10 (5 männlich, 5 weiblich) gesunden Studienteilnehmern wurden eingeschlossen. Prä-VM, -VD und -VLD betrugen 0,428 (± 0,291) und 17,871 mm−1 (± 2,22 mm−1) im SCP und 0,423 (± 0,0213) und 23,850 mm−1 (± 1,023 mm−1) im DCP. Prä-VM und -FV betrugen 19,686 (± 1,959). Während des VM betrugen die VD und die VLD im SCP 0,417 (± 0,024) und 17,376 mm−1 (± 2,007 mm−1) und im DCP 0,426 (± 0,221) bzw. 23,944 mm−1 (± 1,021 mm−1). Die FV nach dem VM waren 20,440 (± 2,062). Ein t-Test für gepaarte Stichproben ergab keine signifikanten Veränderungen bei den beobachteten Parametern.

Schlussfolgerung Wir beobachteten keine signifikanten Veränderungen bei der VD, der VLD oder den FV. Dies könnte auf autoregulatorische Prozesse der okulären Vaskulatur zurückzuführen sein. Aufgrund der geringen Stichprobengröße sind die Konfidenzintervalle vergleichsweise groß. Weitere Studien mit mehr Probanden sind angezeigt.

* Both Wiest Maximilian Robert Justus and Hamann Timothy contributed equally as shared first authors.




Publication History

Received: 20 September 2021

Accepted: 06 February 2022

Article published online:
26 April 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Srivastav S, Jamil RT, Zeltser R. Valsalva Maneuver. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. Accessed September 11, 2021 at: https://www.ncbi.nlm.nih.gov/books/NBK537248/
  • 2 Sejersen C, Rocha MP, Van Lieshout JJ. et al. Influence of breathing on variation in cardiac stroke volume at the onset of cycling. Eur J Appl Physiol 2021; 121: 3061-3067
  • 3 Lan Q, Han B, Wu F. et al. Modified Valsalva maneuver for treatment of supraventricular tachycardias: A Meta-analysis. Am J Emerg Med 2021; 50: 507-512
  • 4 Treuting PM, Wong R, Tu DC, Phan I. 21 – Special Senses: Eye. In: Treuting PM, Dintzis SM. eds. Comparative Anatomy and Histology. San Diego: Academic Press; 2012: 395-418
  • 5 Spaide RF, Fujimoto JG, Waheed NK. et al. Optical coherence tomography angiography. Prog Retin Eye Res 2018; 64: 1-55
  • 6 Spaide RF, Klancnik jr. JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 2015; 133: 45-50
  • 7 Bonfiglio V, Ortisi E, Scollo D. et al. Vascular changes after vitrectomy for rhegmatogenous retinal detachment: optical coherence tomography angiography study. Acta Ophthalmol 2019;
  • 8 Wrzesińska D, Nowomiejska K, Nowakowska D. et al. Secondary Vitrectomy with Internal Limiting Membrane Plug due to Persistent Full-Thickness Macular Hole OCT-Angiography and Microperimetry Features: Case Series. J Ophthalmol 2020; 2020: 2650873
  • 9 Arumuganathan N, Wiest MRJ, Toro MD. et al. Acute and subacute macular and peripapillary angiographic changes in choroidal and retinal blood flow post-intravitreal injections. Sci Rep 2021; 11: 19381
  • 10 Koman-Wierdak E, Nowomiejska K, Brzozowska A. et al. Kinetic and static perimetry after 16 years and additional OCT-A analysis in eyes with long-lasting optic disc drusen. PLoS One 2021; 16: e0247399
  • 11 Carnevali A, Mastropasqua R, Gatti V. et al. Optical coherence tomography angiography in intermediate and late age-related macular degeneration: Review of current technical aspects and applications. Applied Sciences 2020; 10: 8865
  • 12 Wiest MRJ, Toro MD, Nowak A. et al. Globotrioasylsphingosine Levels and Optical Coherence Tomography Angiography in Fabry Disease Patients. J Clin Med 2021; 10: 1093
  • 13 Carnevali A, Giannaccare G, Gatti V. et al. Retinal microcirculation abnormalities in patients with systemic sclerosis: an explorative optical coherence tomography angiography study. Rheumatology (Oxford) 2021; 60: 5827-5832
  • 14 Chisari CG, Toro MD, Cimino V. et al. Retinal Nerve Fiber Layer Thickness and Higher Relapse Frequency May Predict Poor Recovery after Optic Neuritis in MS Patients. J Clin Med 2019; 8: 2022
  • 15 Zweifel SA, Foa N, Wiest MRJ. et al. Differences between Mycobacterium chimaera and tuberculosis Using Ocular Multimodal Imaging: A Systematic Review. J Clin Med 2021; 10: 4880
  • 16 Zweifel SA, Wiest MRJ, Toro MD. et al. Long-Term Clinical and Multimodal Imaging Findings in Patients with Disseminated Mycobacterium Chimaera Infection. J Clin Med 2021; 10: 4178
  • 17 Holló G. Valsalva Maneuver and Peripapillary OCT Angiography Vessel Density. J Glaucoma 2018; 27: e133-e136
  • 18 [Anonymous] Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology 1991; 98: 741-756
  • 19 Zong Y, Xu H, Yu J. et al. Retinal Vascular Autoregulation during Phase IV of the Valsalva Maneuver: An Optical Coherence Tomography Angiography Study in Healthy Chinese Adults. Front Physiol 2017; 8: 553
  • 20 Aaslid R, Lindegaard KF, Sorteberg W. et al. Cerebral autoregulation dynamics in humans. Stroke 1989; 20: 45-52