Subscribe to RSS
DOI: 10.1055/a-1766-7448
Structural, Microvascular, and Functional Findings Associated with Fovea Plana
Strukturelle, mikrovaskuläre und funktionelle Befunde im Zusammenhang mit Fovea plana
Abstract
Purpose To analyse structural (OCT), microvascular (OCTA), and functional changes (BCVA, mfERG) associated with fovea plana and to compare it to healthy controls.
Methods A retrospective observational study was performed on 13 patients (26 eyes; aged 34.46 y ± 20.26) with a clinical picture of fovea plana and 15 controls (30 eyes; aged: 41.47 y ± 14.03).
Results In fovea plana, BCVA ranged from 0.25 to 1.0, with a spherical error of − 5.5 to + 18.0 dpt. Posterior segment changes included elevated papillomacular retinal fold, uveal effusion syndrome, crowded optic discs, and hypopigmented fundus. OCTA imaging of the superficial (FAZ-S), intermediate (FAZ-I), and deep foveal avascular zone (FAZ-D) confirmed absence of foveal avascular zone (FAZ-S in 13 eyes, FAZ-I in 21 eyes, and FAZ-D in 10 eyes). Fovea plana patients had a significantly smaller FAZ-S, FAZ-I, and FAZ-D than controls (p < 0.001). Within the fovea plana group, a smaller FAZ-S correlated with reduced BCVA (p = 0.004) and with reduced mfERGs in zones 1 and 2 (p = 0.001 and p = 0.017). Also, a smaller FAZ-D showed positive correlations with the mfERG, with statistically significant values in zones 1 and 2 (p = 0.003 and p = 0.017).
Conclusion In conclusion, our results confirm an altered structural, microvascular, and functional pattern in patients with a clinical picture of fovea plana. As documented by the functional microvascular interactions in our study, the developmental arrest in foveation reflects the functional maturation by means of visual acuity and central retinal function.
Zusammenfassung
Ziel der Studie Die Analyse der strukturellen (OCT), mikrovaskulären (OCTA) und funktionellen Veränderungen (BCVA, mfERG) von Fovea-plana-Patienten und gesunden Kontrollprobanden.
Methoden Eine retrospektive Beobachtungsstudie wurde an 13 Patienten (26 Augen; Alter 34,46 Jahre ± 20,26) mit einem klinischen Bild einer Fovea plana und 15 Kontrollen (30 Augen; Alter: 41,47 Jahre ± 14,03 Jahre) durchgeführt.
Ergebnisse In der Fovea-plana-Gruppe lag die bestkorrigierte Sehschärfe (BCVA) im Bereich von 0,25 bis 1,0, mit einem sphärischen Fehler von − 5,5 bis + 18,0 dpt. Zu den Veränderungen des hinteren Segments gehörten: papillomakuläre Netzhautfalte, uveales Effusions-Syndrom, Crowded Papille und hypopigmentierter Fundus. Die OCTA-Bildgebung der oberflächlichen (FAZ-S), intermediären (FAZ-I) und tiefen fovealen avaskulären Zone (FAZ-D) zeigte das Fehlen (FAZ-S in 13 Augen, FAZ-I in 21 Augen und FAZ-D in 10 Augen). Fovea-plana-Patienten hatten signifikant kleinere FAZ-S, FAZ-I und FAZ-D als die Kontrollprobanden (p < 0,001). Innerhalb der Fovea-plana-Gruppe korrelierten kleinere foveoläre avaskuläre Zonen im superfiziellem Plexus (FAZ-S) mit reduziertem BCVA (p = 0,004) und mit reduzierten Antworten im mfERG in Zone 1 und 2 (p = 0.001 und p = 0.017). Auch Verminderungen in der FAZ-D zeigten statistische signifikante positive Korrelationen mit den Antworten im mfERG in den Zonen 1 und 2(p = 0,003 und p = 0,017).
Schlussfolgerung Eine Vielzahl klinischer, mikrovaskulärer und funktioneller Befunde kann bei Patienten mit Fovea plana berücksichtigt werden. In dieser Studie konnte gezeigt werden, dass eine Korrelation zwischen der Funktion und den mikrovaskulären Veränderungen bei Patienten mit Fovea plana verschiedenster Ätiologie vorliegt.
Supplementary material
- Supporting Information
Supplemental table: summarised clinical features of fovea plana anomalies.
Publication History
Received: 22 October 2021
Accepted: 06 February 2022
Article published online:
26 April 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Thomas MG, Papageorgiou E, Kuht HJ. et al. Normal and abnormal foveal development. Br J Ophthalmol 2020;
- 2 Hu Z, Wang K, Bertsch M. et al. Correlation between electroretinography, foveal anatomy and visual acuity in albinism. Doc Ophthalmol 2019; 139: 21-32
- 3 Venkatesh R, Jain K, Srinivasan P. et al. Retinal structural and vascular changes in posterior microphthalmos. Clin Exp Optom 2020; 103: 634-640
- 4 Litts KM, Woertz EN, Wynne N. et al. Examining Whether AOSLO-Based Foveal Cone Metrics in Achromatopsia and Albinism Are Representative of Foveal Cone Structure. Transl Vis Sci Technol 2021; 10: 22
- 5 Hess K, Pfau M, Wintergerst MWM. et al. Phenotypic Spectrum of the _Foveal Configuration and Foveal Avascular Zone in Patients With Alport Syndrome. Invest Ophthalmol Vis Sci 2020; 61: 5
- 6 Chatzistergiou V, Cilliers H, Pournaras JA. et al. Fovea Plana on Optical _Coherence Tomography Angiography: New Perspectives. Retina 2021; 41: 1541-1546
- 7 Jung SM, Valmaggia C, Todorova MG. Structural, microvascular and functional findings associated with fovea plana. 114. Jahreskongress SOG 2021: St. Gallen.
- 8 McTrusty AD, McCulloch DL, Strang NC. et al. Idiopathic, isolated fovea plana with bilateral off-centre multifocal ERGs. Doc Ophthalmol 2013; 126: 171-176
- 9 Hendrickson A. A morphological comparison of foveal development in man and monkey. Eye (Lond) 1992; 6: 136-144
- 10 Hendrickson A, Drucker D. The development of parafoveal and mid-peripheral human retina. Behav Brain Res 1992; 49: 21-31
- 11 Hendrickson A, Possin D, Vajzovic L. et al. Histologic development of the human fovea from midgestation to maturity. Am J Ophthalmol 2012; 154: 767-778
- 12 Marmor MF, Choi SS, Zawadzki RJ. et al. Visual insignificance of the foveal pit: reassessment of foveal hypoplasia as fovea plana. Arch Ophthalmol 2008; 126: 907-913
- 13 Thomas MG, Kumar A, Mohammad S. et al. Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography a predictor of visual acuity?. Ophthalmology 2011; 118: 1653-1660
- 14 Kaidonis G, Silva RA, Sanislo SR. et al. The superficial and deep retinal capillary plexus in cases of fovea plana imaged by spectral-domain optical coherence tomography angiography. Am J Ophthalmol Case Rep 2016; 6: 41-44
- 15 Sutter EE, Bearse MA, Shimada Y. et al. A multifocal ERG protocol for testing retinal ganglion cell function. Invest Ophthalmol Vis Sci 1999; S15
- 16 Bearse Jr MA, Sutter EE. Imaging localized retinal dysfunction with the multifocal electroretinogram. J Opt Soc Am A Opt Image Sci Vis 1996; 13: 634-640
- 17 Chen SD, Hanson R, Hundal K. Foveal hypoplasia and other ocular signs: a possible case of incontinentia pigmenti?. Arch Ophthalmol 2003; 121: 921
- 18 Hamid MA, Mehta MC, Kuppermann BD. Multimodal imaging in a patient with Prader-Willi syndrome. Int J Retina Vitreous 2018; 4: 45
- 19 Keles A, Ilhan C, Tekin K. et al. Septo-optic dysplasia with fovea plana: A case report. Eur J Ophthalmol 2020; 30: NP36-NP40
- 20 Şekeryapan Gediz B, Şekeroğlu MA. Multimodal Imaging in a Case of Fovea Plana Associated with Situs Inversus of the Optic Disc. Turk J Ophthalmol 2020; 50: 190-192
- 21 Jiang S, Choudhry N. OCT Angiographic Findings in Glucose-6-Phosphate Dehydrogenase Deficiency. Ophthalmic Surg Lasers Imaging Retina 2017; 48: 664-667
- 22 Hoffmann MB, Bach M, Kondo M. et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2021 update). Doc Ophthalmol 2021; 142: 5-16
- 23 Cassiman C, Spileers W, De Baere E. et al. Peculiar fundus abnormalities and pathognomonic electrophysiological findings in a 14-month-old boy with NR2E3 mutations. Ophthalmic Genet 2013; 34: 105-108
- 24 Cronin TH, Hertle RW, Ishikawa H. et al. Spectral domain optical coherence tomography for detection of foveal morphology in patients with nystagmus. J AAPOS 2009; 13: 563-566
- 25 Noval S, Freedman SF, Asrani S. et al. Incidence of fovea plana in normal children. J AAPOS 2014; 18: 471-475
- 26 Abegg M, Dysli M, Wolf S. et al. Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology 2014; 121: 142-149
- 27 Abegg M, Zinkernagel M, Wolf S. Microcystic macular degeneration from optic neuropathy. Brain 2012; 135: e225
- 28 Jin J, Friess A, Hendricks D. et al. Effect of gestational age at birth, sex, and race on foveal structure in children. Graefes Arch Clin Exp Ophthalmol 2021; 259: 3137-3148
- 29 OʼSullivan ML, Ying GS, Mangalesh S. BabySTEPS Group. et al. Foveal Differentiation and Inner Retinal Displacement Are Arrested in Extremely Premature Infants. Invest Ophthalmol Vis Sci 2021; 62: 25
- 30 Cringle SJ, Yu DY. A multi-layer model of retinal oxygen supply and consumption helps explain the muted rise in inner retinal PO(2) during systemic hyperoxia. Comp Biochem Physiol A Mol Integr Physiol 2002; 132: 61-66
- 31 Cringle SJ, Yu DY, Yu PK. et al. Intraretinal oxygen consumption in the rat in vivo . Invest Ophthalmol Vis Sci 2002; 43: 1922-1927
- 32 Sambhav K, Grover S, Chalam KV. The application of optical coherence tomography angiography in retinal diseases. Surv Ophthalmol 2017; 62: 838-866