Subscribe to RSS
DOI: 10.1055/a-1773-1197
Vergleich der Sehleistung mit monofokalen Intraokularlinsen mit und ohne verbesserte optische Eigenschaften in einem Nachtfahrsimulator: eine Proof-of-Concept-Studie
Article in several languages: deutsch | EnglishZusammenfassung
Hintergrund Ziel dieser Studie war die Einführung einer Methode zum „Benchmarking“ von Intraokularlinsen beim Autofahren, insbesondere im Hinblick auf die Sehschärfe (visual acuity, VA) und die Kontrastempfindlichkeit (contrast sensitivity, CS). Dazu wurden Patienten mit IOL-Implantaten: ICB00 (Tecnis Eyhance, Johnson & Johnson, Santa Ana, CA, USA) vs. CNA0T0 (Clareon, Alcon Laboratories Inc., Fort Worth, TX, USA) klinisch und in einem Nachtfahrsimulator untersucht.
Patienten und Methoden Klinische Tests zum Fernvisus bei hohem (high contrast visual acuity, HCVA) und niedrigem Kontrast (low contrast visual acuity, LCVA) sowie zur mesopischen CS wurden bei Probanden mindestens 2 Monate nach einer binokularen IOL-Operation durchgeführt (Einschlusskriterien: Visus > 20/25, ophthalmologisch normal, außer Kataraktoperation). Alle Patienten fuhren im Simulator eine gerade Strecke ab. Die VA, CS und Halogröße wurden binokular während des nächtlichen Autofahrens mit Landolt-Ringen in 4 verschiedenen (Fern- und Intermediärbereichs-)Positionen und Entfernungen gemessen.
Ergebnisse Die Ergebnisse werden als Median/Interquartilsbereich angegeben: ICB00-Daten (CNA0T0-Daten): 5 (6) Probanden im Alter von 69,6/8,3 (71,1/13,0) Jahren wurden eingeschlossen. Klinische Tests: logMAR HCVA 0,11/0,39 (0,00/0,51), logMAR LCVA 0,78/0,52 (0,80/0,54); logCS ohne 0,50/0,31 (0,30/0,65), mit Blendung 0,20/0,15 (0,20/0,5). Fahrsimulator bei Nacht: Die logMAR-VA-Schwellenwerte für die rechte Straßenseite, das Armaturenbrett, den Navigationsbildschirm und den Innenrückspiegel betrugen 0,50/0,06 (0,57/0,22), 0,81/0,07 (0,91/0,14), 0,80/0,17 (0,92/0,27), 0,50/0,11 (0,63/0,26), logCS-Schwellenwerte 1,53/0,67 (1,00/0,81), 0,82/0,11 (0,61/0,19), 0,71/0,14 (0,50/0,15), 0,87/0,07 (0,81/0,11). Größe des Halos: 5,40°/0,89° (5,88°/2,00°).
Schlussfolgerungen In einem Nachtfahrsimulator übertraf die ICB00-IOL die CNA0T0-IOL in Bezug auf logMAR (VA) und logCS um 0,1 log-Einheiten im Intermediärbereich. Klinische Tests für Ferne und Nähe ergaben keinen Unterschied. Dies könnte darauf hindeuten, dass Fahrsimulatorexperimente im Hinblick auf die Leistungsprüfung von IOLs – insbesondere auch im Intermediärbereich – sinnvolle Zusatzinformationen liefern können.
Publication History
Received: 21 December 2021
Accepted: 07 February 2022
Article published online:
14 April 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur/References
- 1 Kraftfahrtbundesamt. Verkehr in Kilometern – Inländerfahrleistung (VK), Entwicklung der Fahrleistungen nach Fahrzeugarten seit 2016. Im Internet (Stand 10.03.2022): https://www.kba.de/DE/Statistik/Kraftverkehr/VerkehrKilometer/vk_inlaenderfahrleistung/2020/verkehr_in_kilometern_kurzbericht_pdf.pdf?__blob=publicationFile&v=5
- 2 Statistisches Bundesamt. Verkehrsunfälle – Zeitreihen – 2019. Im Internet (Stand 10.03.2022): https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/Publikationen/Downloads-Verkehrsunfaelle/verkehrsunfaelle-zeitreihen-pdf-5462403.pdf?__blob=publicationFile
- 3 Wood JM, Owens DA. Standard measures of visual acuity do not predict driversʼ recognition performance under day or night conditions. Optom Vis Sci 2005; 82: 698-705
- 4 Harman FE, Maling S, Kampougeris G. et al. Comparing the 1CU accommodative, multifocal, and monofocal intraocular lenses: a randomized trial. Ophthalmology 2008; 115: 993-1001.e2
- 5 Kamlesh. Dadeya S, Kaushik S. Contrast sensitivity and depth of focus with aspheric multifocal versus conventional monofocal intraocular lens. Can J Ophthalmol 2001; 36: 197-201
- 6 Leyland MD, Langan L, Goolfee F. et al. Prospective randomised double-masked trial of bilateral multifocal, bifocal or monofocal intraocular lenses. Eye (Lond) 2002; 16: 481-490
- 7 Rossetti L, Carraro F, Rovati M. et al. Performance of diffractive multifocal intraocular lenses in extracapsular cataract surgery. J Cataract Refract Surg 1994; 20: 124-128
- 8 Savini G, Schiano-Lomoriello D, Balducci N. et al. Visual performance of a new extended depth-of-focus intraocular lens compared to a distance-dominant diffractive multifocal intraocular lens. J Refract Surg 2018; 34: 228-235
- 9 Baldassare R, Bedi R. Symfony Extended Depth of Focus IOL: A Review of Reported Data. Curr Ophthalmol Rep 2017; 5: 225-231
- 10 Cochener B. Concerto Study Group. Clinical outcomes of a new extended range of vision intraocular lens: International Multicenter Concerto Study. J Cataract Refract Surg 2016; 42: 1268-1275
- 11 Hamid A, Sokwala A. A more natural way of seeing: visual performance of three presbyopia correcting intraocular lenses. Open J Ophthalmol 2016; 6: 176-183
- 12 Pedrotti E, Bruni E, Bonacci E. et al. Comparative analysis of the clinical outcomes with a monofocal and an extended range of vision intraocular lens. J Refract Surg 2016; 32: 436-442
- 13 Mencucci R, Cennamo M, Venturi D. et al. Visual outcome, optical quality, and patient satisfaction with a new monofocal IOL, enhanced for intermediate vision: Preliminary results. J Cataract Refract Surg 2020; 46: 378-387
- 14 Bach M. The Freiburg Visual Acuity Test – Automatic Measurement of Visual Acuity. Optom Vis Sci 1996; 73: 49-53
- 15 Ungewiss J, Wörner M, Schiefer U. A driving simulator as a tool for benchmarking optical lenses. Conception of the Aalen Mobility Perception & Exploration Lab (AMPEL). MAFO 2020; 5: 10-14
- 16 Johnson CA, Keltner JL. Optimal rates of movement for kinetic perimetry. Arch Ophthalmol 1987; 105: 73-75
- 17 Hayashi K, Ogawa S, Manabe S. et al. Visual outcomes in eyes with a distance-dominant diffractive multifocal intraocular lens with low near addition power. Br J Ophthalmol 2015; 99: 1466-1470
- 18 Featherstone KA, Bloomfield JR, Lang AJ. et al. Driving simulation study: bilateral array multifocal versus bilateral AMO monofocal intraocular lenses. J Cataract Refract Surg 1999; 25: 1254-1262
- 19 Cillino S, Casuccio A, Di Pace F. et al. One-year outcomes with new-generation multifocal intraocular lenses. Ophthalmology 2008; 115: 1508-1516
- 20 Haaskjold E, Allen ED, Burton RL. et al. Contrast sensitivity after implantation of diffractive bifocal and monofocal intraocular lenses. J Cataract Refract Surg 1998; 24: 653-658
- 21 Martínez Palmer A, Gómez Faiña P, España Albelda A. et al. Visual function with bilateral implantation of monofocal and multifocal intraocular lenses: a prospective, randomized, controlled clinical trial. J Refract Surg 2008; 24: 257-264
- 22 Percival SP, Setty SS. Prospectively randomized trial comparing the pseudoaccommodation of the AMO ARRAY multifocal lens and a monofocal lens. J Cataract Refract Surg 1993; 19: 26-31
- 23 Schmitz S, Dick HB, Krummenauer F. et al. Contrast sensitivity and glare disability by halogen light after monofocal and multifocal lens implantation. Br J Ophthalmol 2000; 84: 1109-1112
- 24 Vos JJ. On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation. Clin Exp Optom 2003; 86: 363-370
- 25 Pepose JS, Qazi MA, Davies J. et al. Visual performance of patients with bilateral vs. combination Crystalens, ReZoom, and ReSTOR intraocular lens implants. Am J Ophthalmol 2007; 144: 347-357