Zahnmedizin up2date, Table of Contents Zahnmedizin up2date 2022; 16(02): 137-161DOI: 10.1055/a-1775-5687 Zahnerhaltung, Prävention und Restauration Lichtpolymerisation heute Uwe Blunck , Nicoleta Ilie Recommend Article Abstract Buy Article All articles of this category Die Lichthärtung von zahnärztlichen Materialien ist ein essenzieller Bestandteil der zahnärztlichen Behandlung geworden. Das Angebot an lichthärtenden Produkten ist in den letzten Jahren enorm gewachsen, sodass die Aushärtung von Adhäsivsystemen, Füllungskompositen und Befestigungsmaterialien mit einem Polymerisationslichtgerät heute zum Standard der zahnärztlichen Behandlung gehört. Dabei können sich allerdings leicht Fehler einschleichen, welche die Langlebigkeit von Restaurationen entscheidend beeinflussen. In diesem Beitrag sollen daher die wichtigsten Aspekte für eine sichere Polymerisation lichthärtender Kompositmaterialien dargestellt werden. Full Text References Literatur 1 Sabbagh J, McConnell RJ, McConnell MC. Posterior composites: Update on cavities and filling techniques. J Dent 2017; 57: 86-90 2 Kopperud SE, Rukke HV, Kopperud HM. et al. Light curing procedures – performance, knowledge level and safety awareness among dentists. J Dent 2017; 58: 67-73 3 Ernst CP, Price RB, Callaway A. et al. Visible Light Curing Devices – Irradiance and Use in 302 German Dental Offices. J Adhes Dent 2018; 20: 41-55 4 Ak AT, Alpoz AR, Bayraktar O. et al. Monomer Release from Resin Based Dental Materials Cured With LED and Halogen Lights. Eur J Dent 2010; 4: 34-40 5 Sunitha C, Kailasam V, Padmanabhan S. et al. Bisphenol A release from an orthodontic adhesive and its correlation with the degree of conversion on varying light-curing tip distances. Am J Orthod Dentofacial Orthop 2011; 140: 239-244 6 Ergun G, Egilmez F, Cekic-Nagas I. The effect of light curing units and modes on cytotoxicity of resin-core systems. Med Oral Patol Oral Cir Bucal 2010; 15: e962-e968 7 Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water-effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res 1998; 42: 465-472 8 Calheiros FC, Daronch M, Rueggeberg FA. et al. Degree of conversion and mechanical properties of a BisGMA : TEGDMA composite as a function of the applied radiant exposure. J Biomed Mater Res B Appl Biomater 2008; 84: 503-509 9 Bhamra GS, Fleming GJ. Influence of halogen irradiance on short- and long-term wear resistance of resin-based composite materials. Dent Mater 2009; 25: 214-220 10 Brackett MG, Brackett WW, Browning WD. et al. The effect of light curing source on the residual yellowing of resin composites. Oper Dent 2007; 32: 443-450 11 Price RB, Ferracane JL, Shortall AC. Light-Curing Units: A Review of What We Need to Know. J Dent Res 2015; 94: 1179-1186 12 Ferracane JL, Mitchem JC, Condon JR. et al. Wear and marginal breakdown of composites with various degrees of cure. J Dent Res 1997; 76: 1508-1516 13 Rueggeberg FA, Cole MA, Looney SW. et al. Comparison of manufacturer-recommended exposure durations with those determined using biaxial flexure strength and scraped composite thickness among a variety of light-curing units. J Esthet Restor Dent 2009; 21: 43-61 14 Price RB. Light curing guidelines for practitioners: a consensus statement from the 2014 symposium on light curing in dentistry, Dalhousie University, Halifax, Canada. J Can Dent Assoc 2014; 80: e61 15 Price RB, Ferracane JL, Hickel R. et al. The light-curing unit: An essential piece of dental equipment. Int Dent J 2020; 70: 407-417 16 Neumann MG, Miranda Jr WG, Schmitt CC. et al. Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units. J Dent 2005; 33: 525-532 17 Rueggeberg FA. State-of-the-art: dental photocuring-a review. Dent Mater 2011; 27: 39-52 18 Gan JK, Yap AU, Cheong JW. et al. Bulk-Fill Composites: Effectiveness of Cure With Poly- and Monowave Curing Lights and Modes. Oper Dent 2018; 43: 136-143 19 Ivoclar Vivdent AG. Ivocerin® – Ein Meilenstein der Composite-Technologie. Report aus der Forschung und Entwicklung der Ivoclar Vivdent AG 2013; Nr. 19. 20 Ikemura K, Endo T. A review of the development of radical photopolymerization initiators used for designing light-curing dental adhesives and resin composites. Dent Mater J 2010; 29: 481-501 21 Lovell LG, Newman SM, Donaldson MM. et al. The effect of light intensity on double bond conversion and flexural strength of a model, unfilled dental resin. Dent Mater 2003; 19: 458-465 22 Halvorson RH, Erickson RL, Davidson CL. Energy dependent polymerization of resin-based composite. Dent Mater 2002; 18: 463-469 23 Leprince JG, Leveque P, Nysten B. et al. New insight into the “depth of cure” of dimethacrylate-based dental composites. Dent Mater 2012; 28: 512-520 24 Munchow EA, Meereis CTW, de Oliveira da Rosa WL. et al. Polymerization shrinkage stress of resin-based dental materials: A systematic review and meta-analyses of technique protocol and photo-activation strategies. J Mech Behav Biomed Mater 2018; 82: 77-86 25 Soares CJ, Rodrigues MP, Vilela AB. et al. Evaluation of Eye Protection Filters Used with Broad-Spectrum and Conventional LED Curing Lights. Braz Dent J 2017; 28: 9-15 26 Jandt KD, Mills RW. A brief history of LED photopolymerization. Dent Mater 2013; 29: 605-617 27 Price RB, Felix CA. Effect of delivering light in specific narrow bandwidths from 394 to 515 nm on the micro-hardness of resin composites. Dent Mater 2009; 25: 899-908 28 Leprince J, Devaux J, Mullier T. et al. Pulpal-temperature rise and polymerization efficiency of LED curing lights. Oper Dent 2010; 35: 220-230 29 Oh S, Shin SM, Kim HJ. et al. Influence of glass-based dental ceramic type and thickness with identical shade on the light transmittance and the degree of conversion of resin cement. Int J Oral Sci 2018; 10: 5 30 Palin WM, Hadis MA, Leprince JG. et al. Reduced polymerization stress of MAPO-containing resin composites with increased curing speed, degree of conversion and mechanical properties. Dent Mater 2014; 30: 507-516 31 Pacheco RR, Carvalho AO, André CB. et al. Effect of indirect restorative material and thickness on light transmission at different wavelengths. J Prosthodont Res 2019; 63: 232-238 32 Duran İ, Kaleli N, Ural Ç. et al. Evaluation of the light transmission of chairside polymer infiltrated hybrid ceramics in different shades and thicknesses. J Appl Biomater Funct Mater 2019; 17: 2280800018807109 33 Almeida JR, Schmitt GU, Kaizer MR. et al. Resin-based luting agents and color stability of bonded ceramic veneers. J Prosthet Dent 2015; 114: 272-277 34 Sulaiman TA, Abdulmajeed AA, Donovan TE. et al. Degree of conversion of dual-polymerizing cements light polymerized through monolithic zirconia of different thicknesses and types. J Prosthet Dent 2015; 114: 103-108 35 Lima AF. Transmission of violet and blue light and current light units through glass-reinforced ceramics with different thicknesses. J Prosthodont Res 2021; 65: 387-392 36 Ilie N, Furtos G. A comparative study of light transmission by various dental restorative materials and the tooth structure. Oper Dent 2020; 45: 442-452 37 Harlow JE, Rueggeberg FA, Labrie D. et al. Transmission of violet and blue light through conventional (layered) and bulk cured resin-based composites. J Dent 2016; 53: 44-50 38 Butterhof M, Ilie N. Mathematical model for assessing true irradiance received by luting materials while curing through modern CAD/CAM resin composites. Dent Mater 2020; 36: e255-e265 39 Stawarczyk B, Awad D, Ilie N. Blue-Light Transmittance of Esthetic Monolithic CAD/CAM Materials With Respect to Their Composition, Thickness, and Curing Conditions. Oper Dent 2016; 41: 531-540 40 Ilie N. Transmitted irradiance through ceramics: effect on the mechanical properties of a luting resin cement. Clin Oral Investig 2017; 21: 1183-1190 41 Awad D, Stawarczyk B, Liebermann A. et al. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J Prosthet Dent 2015; 113: 534-540 42 Ilie N, Stawarczyk B. Quantification of the amount of blue light passing through monolithic zirconia with respect to thickness and polymerization conditions. J Prosthet Dent 2015; 113: 114-121 43 Price RB, Derand T, Sedarous M. et al. Effect of distance on the power density from two light guides. J Esthet Dent 2000; 12: 320-327 44 Price RB, Rueggeberg FA, Labrie D. et al. Irradiance uniformity and distribution from dental light curing units. J Esthet Restor Dent 2010; 22: 86-101 45 Corciolani G, Vichi A, Davidson CL. et al. The influence of tip geometry and distance on light-curing efficacy. Oper Dent 2008; 33: 325-331 46 Certosimo FJ, Diefenderfer KE, Mosur MA. Light output of disposable vs. nondisposable curing light tips following high-level disinfection. Gen Dent 2003; 51: 142-146 47 Koran P, Kurschner R. Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity, adhesion, and degree of polymerization. Am J Dent 1998; 11: 17-22 48 Musanje L, Darvell BW. Polymerization of resin composite restorative materials: exposure reciprocity. Dent Mater 2003; 19: 531-541 49 Shortall AC. How light source and product shade influence cure depth for a contemporary composite. J Oral Rehabil 2005; 32: 906-911 50 Erickson RL, Barkmeier WW, Halvorson RH. Curing characteristics of a composite – part 1: cure depth relationship to conversion, hardness and radiant exposure. Dent Mater 2014; 30: e125-e133 51 Rueggeberg FA, Caughman WF, Curtis Jr JW. Effect of light intensity and exposure duration on cure of resin composite. Oper Dent 1994; 19: 26-32 52 Sobrinho LC, Goes MF, Consani S. et al. Correlation between light intensity and exposure time on the hardness of composite resin. J Mater Sci Mater Med 2000; 11: 361-364 53 Deb S, Sehmi H. A comparative study of the properties of dental resin composites polymerized with plasma and halogen light. Dent Mater 2003; 19: 517-522 54 Joly GD, Abuelyaman AS, Fornof AR. et al. Dental compositions comprising addition-fragmentation agents (patent). 2015 55 Ilie N. Sufficiency of curing in high-viscosity bulk-fill resin composites with enhanced opacity. Clin Oral Investig 2018; 23: 747-755 56 Ilie N, Watts DC. Outcomes of ultra-fast (3 s) photo-cure in a RAFT-modified resin-composite. Dent Mater 2020; 36: 570-579 57 Barner-Kowollik C. Handbook of RAFT Polymerization. Wiley-VCH; 2008 58 Gorsche C, Griesser M, Gescheidt G. et al. β-Allyl Sulfones as Addition–Fragmentation Chain Transfer Reagents: A Tool for Adjusting Thermal and Mechanical Properties of Dimethacrylate Networks. Macromolecules 2014; 47: 7327-7336 59 Garoushi S, Lassila L, Vallittu PK. Impact of Fast High-Intensity versus Conventional Light-Curing Protocol on Selected Properties of Dental Composites. Materials 2021; 14: 1381 60 Watts DC, Algamaiah H. Characterizing surface viscoelastic integrity of ultra-fast photo-polymerized composites: Methods development. Dent Mater 2020; 36: 1255-1265 61 Algamaiah H, Silikas N, Watts DC. Conversion kinetics of rapid photo-polymerized resin composites. Dent Mater 2020; 36: 1266-1274 62 Graf N, Ilie N. Long-Term Stability of a RAFT-Modified Bulk-Fill Resin-Composite under Clinically Relevant Versus ISO-Curing Conditions. Materials (Basel 2020; 13 63 Hayashi J, Tagami J, Chan D. et al. New bulk-fill composite system with high irradiance light polymerization: Integrity and degree of conversion. Dent Mater 2020; 36: 1615-1623 64 Algamaiah H, Silikas N, Watts DC. Polymerization shrinkage and shrinkage stress development in ultra-rapid photo-polymerized bulk fill resin composites. Dent Mater 2021; 37: 559-567 65 Par M, Marovic D, Attin T. et al. Effect of rapid high-intensity light-curing on polymerization shrinkage properties of conventional and bulk-fill composites. J Dent 2020; 101: 103448 66 Yang J, Algamaiah H, Watts DC. Spatio-temporal temperature fields generated coronally with bulk-fill resin composites: A thermography study. Dent Mater 2021; 37: 1237-1247 67 Ilie N, Diegelmann J. Impact of ultra-fast (3 s) light-cure on cell toxicity and viscoelastic behavior in a dental resin-based composite with RAFT-mediated polymerization. J Mech Behav Biomed Mater 2021; 124: 104810 68 Emami N, Soderholm KJ. How light irradiance and curing time affect monomer conversion in light-cured resin composites. Eur J Oral Sci 2003; 111: 536-542 69 Lima RBW, Troconis CCM, Moreno MBP. et al. Depth of cure of bulk fill resin composites: A systematic review. J Esthet Restor Dent 2018; 70 Shortall AC, Palin WM, Burtscher P. Refractive index mismatch and monomer reactivity influence composite curing depth. J Dent Res 2008; 87: 84-88 71 Ilie N, Bucuta S, Draenert M. Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent 2013; 38: 618-625 72 Moszner N, Fischer UK, Ganster B. et al. Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater 2008; 24: 901-907 73 Baroudi K, Silikas N, Watts DC. In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites. Int J Paediatr Dent 2009; 19: 48-54 74 Gross DJ, Dávila-Sánchez A, Runnacles P. et al. In vivo temperature rise and acute inflammatory response in anesthetized human pulp tissue of premolars having Class V preparations after exposure to Polywave® LED light curing units. Dent Mater 2020; 36: 1201-1213 75 Zarpellon DC, Runnacles P, Maucoski C. et al. Controlling In Vivo, Human Pulp Temperature Rise Caused by LED Curing Light Exposure. Oper Dent 2019; 44: 235-241 76 Shimokawa C, Sullivan B, Turbino ML. et al. Influence of Emission Spectrum and Irradiance on Light Curing of Resin-Based Composites. Oper Dent 2017; 42: 537-547 77 Rocha MG, de Oliveira D, Correa IC. et al. Light-emitting Diode Beam Profile and Spectral Output Influence on the Degree of Conversion of Bulk Fill Composites. Oper Dent 2017; 42: 418-427 78 Price RB, Labrie D, Rueggeberg FA. et al. Correlation between the beam profile from a curing light and the microhardness of four resins. Dent Mater 2014; 30: 1345-1357 79 Shimokawa CA, Turbino ML. et al. Effect of curing light and exposure time on the polymerization of bulk fill resin-based composites in molar teeth. Oper Dent 2020; 45: 141-155 80 Shimokawa CA, Harlow JE, Turbino ML. et al. Ability of four dental radiometers to measure the light output from nine curing lights. J Dent 2016; 54: 48-55 81 Shortall AC, Price RB, MacKenzie L. et al. Guidelines for the selection, use, and maintenance of LED light-curing units – Part 1. Br Dent J 2016; 221: 453-460 82 Shortall AC, Price RB, MacKenzie L. et al. Guidelines for the selection, use, and maintenance of LED light-curing units – Part II. Br Dent J 2016; 221: 551-554 83 Price RB, McLeod ME, Felix CM. Quantifying light energy delivered to a Class I restoration. J Can Dent Assoc 2010; 76: a23 84 McCusker N, Lee SM, Robinson S. et al. Light curing in orthodontics; should we be concerned?. Dent Mater 2013; 29: e85-e90 85 Ham Jr WT, Mueller HA, Sliney DH. Retinal sensitivity to damage from short wavelength light. Nature 1976; 260: 153-155 86 Margrain TH, Boulton M, Marshall J. et al. Do blue light filters confer protection against age-related macular degeneration?. Prog Retin Eye Res 2004; 23: 523-531 87 Fluent MT, Ferracane JL, Mace JG. et al. Shedding light on a potential hazard: Dental light-curing units. J Am Dent Assoc 2019; 150: 1051-1058 88 Satrom KD, Morris MA, Crigger LP. Potential retinal hazards of visible-light photopolymerization units. J Dent Res 1987; 66: 731-736 89 Moseley H, Strang R, MacDonald I. Evaluation of the risk associated with the use of blue light polymerizing sources. J Dent 1987; 15: 12-15 90 Price RB, Labrie D, Bruzell EM. et al. The dental curing light: A potential health risk. J Occup Environ Hyg 2016; 13: 639-646