Synthesis 2022; 54(17): 3729-3738
DOI: 10.1055/a-1790-0869
feature

Rhodium(I)-Catalyzed Regioselective C–H Alkenylation of 2,2′-Bipyridine Derivatives with Alkynes

Jia Yu
,
Si Wen
,
Qingyu Tian
,
Yanhui Chen
,
Guolin Cheng
This work was supported by the National Natural Science Foundation of China (22071068).


Abstract

In this work, a Rh(I)-catalyzed C3-alkenylation of 2,2′-bipyri­dine-6-carboxamide with terminal and internal alkynes was developed, providing an efficient access to a broad range of alkenylated 2,2′-bipyridine derivatives with exclusive regioselectivity and stereoselectivity. Deuterium labeling experiments indicate that an irreversible rollover C–H activation process is involved in this reaction.

Supporting Information



Publication History

Received: 29 December 2021

Accepted after revision: 07 March 2022

Accepted Manuscript online:
07 March 2022

Article published online:
25 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Lam NY. S, Wu K, Yu JQ. Angew. Chem. Int. Ed. 2021; 60: 15767
    • 1b Saint-Denis TG, Zhu RY, Chen G, Wu QF, Yu JQ. Science 2018; 359: 759
    • 1c Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
    • 2a Butschke B, Schwarz H. Chem. Sci. 2012; 3: 308
    • 2b De Pascali M, Vergine M, Sabella E, Aprile A, Nutricati E, Nicoli F, Buja I, Negro C, Miceli A, Rampino P, De Bellis L, Luvisi A. Plants (Basel) 2019; 8: 17
    • 3a Hagui W, Periasamy K, Soule JF. Eur. J. Org. Chem. 2021; 5388
    • 3b Katagiri T, Mukai T, Satoh T, Hirano K, Miura M. Chem. Lett. 2009; 38: 118
    • 3c Kwak J, Ohk Y, Jung Y, Chang S. J. Am. Chem. Soc. 2012; 134: 17778
    • 3d Wu SN, Wang Z, Bao YW, Chen C, Liu K, Zhu BL. Chem. Commun. 2020; 56: 4408
    • 3e Chen MJ, Meng HF, Yang F, Wang YN, Chen C, Zhu BL. Org. Biomol. Chem. 2021; 19: 4268
  • 4 Rubio-Perez L, Iglesias M, Castarlenas R, Polo V, Perez-Torrente JJ, Oro LA. ChemCatChem 2014; 6: 3192
    • 5a Ghorai D, Dutta C, Choudhury J. ACS Catal. 2016; 6: 709
    • 5b Karak P, Dutta C, Dutta T, Koner AL, Choudhury J. Chem. Commun. 2019; 55: 6791
    • 6a Meng HF, Yang F, Chen MJ, Chen C, Zhu BL. Org. Chem. Front. 2021; 8: 773
    • 6b Wu SN, Wang Z, Ma DX, Chen C, Zhu BL. Org. Chem. Front. 2020; 7: 1158
  • 7 Hong SY, Kwak J, Chang S. Chem. Commun. 2016; 52: 3159
    • 8a Yu J, Lv WW, Cheng GL. Org. Lett. 2018; 20: 4732
    • 8b Yu J, Wen S, Ba D, Lv WW, Chen YH, Cheng GL. Org. Lett. 2019; 21: 6366
    • 9a Choi I, Shen ZG, Ronge E, Karius V, Jooss C, Ackermann L. Chem. Eur. J. 2021; 27: 12737
    • 9b Martinez AM, Alonso I, Rodriguez N, Arrayas RG, Carretero JC. Chem. Eur. J. 2019; 25: 5733
    • 9c Martinez AM, Echavarren J, Alonso I, Rodriguez N, Arrayas RG, Carretero JC. Chem. Sci. 2015; 6: 5802
    • 9d Cai SG, Chen C, Shao P, Xi CJ. Org. Lett. 2014; 16: 3142
    • 10a Cheng HC, Hernandez JG, Bolm C. Org. Lett. 2017; 19: 6284
    • 10b Kathiravan S, Nicholls IA. Tetrahedron Lett. 2017; 58: 1
    • 10c Zhang X, Yu XQ, Feng XJ, Yamamoto Y, Almansour AI, Arumugam N, Kumar RS, Bao M. Chem. Asian J. 2016; 11: 3241
    • 11a Mei XG, Lan MM, Cui GD, Zhang HW, Zhu WM. Org. Chem. Front. 2019; 6: 3566
    • 11b Zhu YG, Zhang QB, Li SM, Lin QH, Fu P, Zhang GT, Zhang HB, Shi R, Zhu WM, Zhang CS. J. Am. Chem. Soc. 2013; 135: 18750
    • 12a Almaliti J, Al-Hamashi AA, Negmeldin AT, Hanigan CL, Perera L, Pflum MK. H, Casero RA, Tillekeratne LM. V. J. Med. Chem. 2016; 59: 10642
    • 12b Woon EC. Y, Demetriades M, Bagg EA. L, Aik W, Krylova SM, Ma JH. Y, Chan MC, Walport LJ, Wegman DW, Dack KN, McDonough MA, Krylov SN, Schofield CJ. J. Med. Chem. 2012; 55: 2173
    • 13a O’Duill ML, Matsuura R, Wang YY, Turnbull JL, Gurak JA, Gao DW, Lu G, Liu P, Engle KM. J. Am. Chem. Soc. 2017; 139: 15576
    • 13b Vasta JD, Raines RT. Biochemistry 2016; 55: 3224
    • 14a Xu X, Zhang L, Zhao H, Pan Y, Li J, Luo Z, Han J, Xu L, Lei M. Org. Lett. 2021; 23: 4624
    • 14b Xu X, Luo C, Zhao H, Pan Y, Zhang X, Li J, Xu L, Lei M, Walsh PJ. Chem. Eur. J. 2021; 27: 8811