Synthesis 2022; 54(18): 3962-3976 DOI: 10.1055/a-1794-0770
Facile Access to Spiro[4.5]decanes through Oxidative Dearomatization-Induced Ring Expansion of Cyclobutanes
Shuang Xi
,
Jingyang Zhang
,
Zhen Guo
,
Yumeng Zu
,
Yang Liu
,
Gelin Wang
,
We acknowledge the financial support from the National Natural Science Foundation of China (21971140), the Tsinghua University Spring Breeze Fund (2021Z99CFY015), and the Beijing Natural Science Foundation (M21011).
Abstract
A mechanistically interesting and practical method for the synthesis of functionalized spiro[4.5]decanes is developed, featuring oxidative dearomatization-induced ring expansion of cyclobutanes as the key element. The new method enables facile access to a variety of spiro[4.5]cyclohexadienones with good efficiency and generality. Further elaboration of the resulting products into other valuable scaffolds is also explored, leading to the discovery of an interesting compound that displays a promising biological profile. Moreover, we have also conducted a comprehensive computational study that provides a deep insight into the mechanism of the reaction.
Key words
oxidative dearomatization -
phenol -
cyclobutane -
ring expansion -
spiro[4.5]decane
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1794-0770.
Supporting Information
Publication History
Received: 12 February 2022
Accepted after revision: 10 March 2022
Accepted Manuscript online: 10 March 2022
Article published online: 03 May 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
For leading reviews on spirocarbocycles, see:
1a
Sannigrahi M.
Tetrahedron 1999; 55: 9007
1b
Pradhan R,
Patra M,
Behera AK,
Mishra BK,
Behera RK.
Tetrahedron 2006; 62: 779
1c
Ramon R.
Chem. Soc. Rev. 2012; 41: 1060
1d
D’yakonov VA,
Trapeznikova OA,
de Meijere A,
Dzhemilev UM.
Chem. Rev. 2014; 114: 5775
1e
Reddy CR,
Prajapti SK,
Warudikar K,
Ranjana R,
Rao BB.
Org. Biomol. Chem. 2017; 15: 3130
For a relevant book chapter, see:
2a
Marshall JA,
Brady SF,
Andersen NH.
The Chemistry of Spiro[4.5]Decane Sesquiterpenes
. In
Progress in the Chemistry of Organic Natural Products , Vol. 31.
Herz W,
Grisebach H,
Kirby GW.
Springer-Verlag; Wien: 1974: 283
For the selected examples listed in Figure [1 ], see
2b
Marshall JA,
Johnson PC.
J. Org. Chem. 1970; 35: 192
2c
Barrow CJ,
Blunt JW,
Munro MH. G.
Aust. J. Chem. 1988; 41: 1755
2d
Bernauer K.
Helv. Chim. Acta 1964; 47: 2122
2e
Park HB,
Kim Y.-J,
Lee JK,
Lee KR,
Kwon HC.
Org. Lett. 2012; 14: 5002
2f
Stork G,
Clarke FH.
J. Am. Chem. Soc. 1961; 83: 3114
2g
Kotha S,
Mandal K.
Tetrahedron Lett. 2004; 45: 1391
For selected examples, see:
3a
Buchi G,
Berthet D,
Decorzant R,
Grieder A,
Hauser A.
J. Org. Chem. 1976; 41: 3208
3b
Kido F,
Abiko T,
Kato MJ.
J. Chem. Soc., Perkin Trans. 2 1992; 229
3c
Maulide N,
Vanherck J.-C,
Markó IE.
Eur. J. Org. Chem. 2004; 19: 3962
3d
Kuroda C,
Honda S,
Nagura Y.
Tetrahedron 2004; 60: 319
3e
Inui M,
Nakazaki N,
Kobayashi S.
Org. Lett. 2007; 9: 469
3f
Rousseaux S,
García-Fortanet J,
Sanchez MA. D. A,
Buchwald SL.
J. Am. Chem. Soc. 2011; 133: 9282
3g
Yoshida M,
Nemoto T,
Zhao Z,
Ishige Y,
Hamada Y.
Tetrahedron: Asymmetry 2012; 23: 859
3h
Unsworth WP,
Cuthbertson JD,
Taylor RJ. K.
Org. Lett. 2013; 15: 3306
3i
Nemoto T,
Zhao Z,
Yokosaka T,
Suzuki Y,
Wu R,
Hamada Y.
Angew. Chem. Int. Ed. 2013; 52: 2217
3j
Su B,
Deng M,
Wang Q.
Org. Lett. 2013; 15: 1606
3k
Bai Y,
Liu A,
Wu XX,
Chen S,
Wang J.
J. Org. Chem. 2020; 85: 6687
4a
Marx J,
Norman LR.
J. Org. Chem. 1975; 40: 1602
4b
Hoye RT,
Martin SJ,
Peck DR.
J. Org. Chem. 1982; 47: 331
4c
Canonne P,
Boulanger R,
Angers P.
Tetrahedron Lett. 1991; 32: 5861
4d
Pages L,
Llebaria A,
Camps F,
Molins E,
Miravitlles C,
Moreto JM.
J. Am. Chem. Soc. 1992; 114: 10449
4e
Knolker H.-J,
Jones PG,
Graf R.
Synlett 1996; 1155
4f
Nan J,
Zuo Z,
Luo L,
Bai L,
Zheng H,
Yuan Y,
Liu J,
Luan X,
Wang Y.
J. Am. Chem. Soc. 2013; 135: 17306
4g
Wang Y,
Wang Z,
Chen X,
Tang Y.
Org. Chem. Front. 2018; 5: 2815
4h
Peng S,
Sun Z,
Zhu H,
Chen N,
Sun X,
Gong X,
Wang J,
Wang L.
Org. Lett. 2020; 22: 3200
4i
Wu JY,
Bai L,
Han LB,
Liu JJ,
Luan XJ.
Chem. Commun. 2021; 57: 1117
For selected examples, see:
5a
Shimada J,
Hashimoto K,
Kim BH,
Nakamura E,
Kuwajima I.
J. Am. Chem. Soc. 1984; 106: 1759
5b
Wu Y.-J,
Zhu Y.-Y,
Burnell DJ.
J. Org. Chem. 1994; 59: 104
5c
Bumell DJ,
Crane SN.
J. Org. Chem. 1998; 63: 5708
5d
Zhang E,
Fan C.-A,
Tu Y.-Q,
Zhang F.-M,
Song Y.-L.
J. Am. Chem. Soc. 2009; 131: 14626
6 For the original report on the isolation of dragonbloodins A1 and A2, see: (it should be noted that this paper was retracted on June 7, 2016)
Du W,
Hung H,
Kuo P,
Hwang T,
Shiu L,
Shiu K,
Lee E,
Tai S,
Wu T.
Org. Lett. 2016; 18: 3042
7a
Schmid M,
Trauner D.
Angew. Chem. Int. Ed. 2017; 56: 12332
7b
Guo Z,
Wang ZG,
Tang YF.
Org. Lett. 2018; 20: 1819
8 Guo Z., Ph.D. Thesis 2020
For excellent reviews on the ring-expansion reactions of cyclobutylmethylcarbenium ions, see:
9a
Leemans E,
D’hooghe M,
De Kimpe N.
Chem. Rev. 2011; 111: 3268
9b
Seiser T,
Saget T,
Tran DN.
Angew. Chem. Int. Ed. 2011; 50: 7740
For some cases that inspired this study, see:
9c
Do Khac Manh D,
Fetizon M,
Flament JP.
Tetrahedron 1975; 31: 1897
9d
Pirrung MC.
J. Am. Chem. Soc. 1979; 101: 7130
9e
Takeda K,
Shimono Y,
Yoshii E.
J. Am. Chem. Soc. 1983; 105: 563
9f
Abe K,
Okumura H,
Tsugoshi T,
Nakamura N.
Synthesis 1984; 603
10
Fujioka H,
Komatsu H,
Nakamura T,
Miyoshi A,
Hata K,
Ganesh J,
Muraia K,
Kita Y.
Chem. Commun. 2010; 46: 4133
11
Guérard KC,
Chapelle C,
Giroux M,
Sabot C,
Beaulieu M,
Achache N,
Canesi S.
Org. Lett. 2009; 11: 4756
12a
Harned AM.
Org. Biomol. Chem. 2018; 16: 2324
12b
Tang T,
Harned AM.
Org. Biomol. Chem. 2018; 16: 8249
13a
Meguro H,
Takagaki K,
Kaino M,
Maruyama T,
Suzuki H,
Okumura M.
JP2012211086, 2012
13b
G-Dayanandan N,
Scocchera EW,
Keshipeddy S,
Jones HF,
Anderson AC,
Wright DL.
Org. Lett. 2016; 19: 142
14a
Zhao Y,
Truhlar DG.
Theor. Chem. Acc. 2008; 119: 215
14b
Weigend F,
Reinhart A.
Phys. Chem. Chem. Phys. 2005; 7: 3297
15
Frisch MJ,
Trucks GW,
Schlegel HB,
Scuseria GE,
Robb MA,
Cheeseman JR,
Scalmani G,
Barone V,
Petersson GA,
Nakatsuji H,
Li X,
Caricato M,
Marenich AV,
Bloino J,
Janesko BG,
Gomperts R,
Mennucci B,
Hratchian HP,
Ortiz JV,
Izmaylov AF,
Sonnenberg JL,
Williams-Young D,
Ding F,
Lipparini F,
Egidi F,
Goings J,
Peng B,
Petrone A,
Henderson T,
Ranasinghe D,
Zakrzewski VG,
Gao J,
Rega N,
Zheng G,
Liang W,
Hada M,
Ehara M,
Toyota K,
Fukuda R,
Hasegawa J,
Ishida M,
Nakajima T,
Honda Y,
Kitao O,
Nakai H,
Vreven T,
Throssell K,
Montgomery JA. Jr,
Peralta JE,
Ogliaro F,
Bearpark MJ,
Heyd JJ,
Brothers EN,
Kudin KN,
Staroverov VN,
Keith TA,
Kobayashi R,
Normand J,
Raghavachari K,
Rendell AP,
Burant JC,
Iyengar SS,
Tomasi J,
Cossi M,
Millam JM,
Klene M,
Adamo C,
Cammi R,
Ochterski JW,
Martin RL,
Morokuma K,
Farkas O,
Foresman JB,
Fox DJ.
16, Revision C.01. Gaussian Inc; Wallingford (CT, USA): 2016
16
Ganji B,
Ariafard A.
Org. Biomol. Chem. 2019; 17: 3521
17a
Colomer I,
Chamberlain AE. R,
Haughey MB,
Donohoe TJ.
Nat. Rev. Chem. 2017; 1: 1
17b
Bégué J.-P,
Bonnet-Delpon D,
Crousse B.
Synlett 2004; 18
For excellent reviews on the application of hypervalent iodine reagents, see:
18a
Yoshimura A,
Zhdankin VV.
Chem. Rev. 2016; 116: 3328
18b
Kita Y,
Takada T,
Tohma H.
Pure Appl. Chem. 1996; 68: 627
19
Hammill JT,
Contreras-García J,
Virshup AM,
Beratan DN,
Yang W,
Wipf P.
Tetrahedron 2010; 66: 5852
20 CCDC 2155602 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
21a
Moisan L,
Wagner M,
Comesse S,
Doris E.
Tetrahedron Lett. 2006; 47: 9093
21b
Singh RP,
Das J,
Yousufuddin M,
Gout D,
Lovely CJ.
Org. Lett. 2017; 19: 4110
22
Purification of Laboratory Chemicals
.
Perrin DD,
Armarego WL,
Perrins DR.
Pergamon Press; Oxford: 1980