Synlett 2022; 33(11): 1003-1010 DOI: 10.1055/a-1801-4696
Synthesis of Carbonyl Compounds by Gold-Catalyzed Carbonylation Reactions
Yanwei Cao
a
Department of Chemistry, Fudan University, Shanghai 200438, P. R. of China
b
State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO), Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. of China
,
b
State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO), Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. of China
› Author Affiliations This work was supported by the National Natural Science Foundation of China (Grant Numbers 21802151 and 21972152) and the China Postdoctoral Science Foundation (Grant Number 2020M681146).
Abstract
In recent years, carbonylation reactions has experienced rapid progress and has become the essential and efficient strategies for the large-scale preparation of carbonyl compounds. Although palladium, rhodium, iridium, ruthenium, and cobalt are the dominating catalysis in carbonylation reactions, the gold has emerged as a selectable catalysis in some specific carbonylation reactions in the past two decades. Both homogeneous and heterogeneous gold catalysis have been studied in carbonylation reactions. Herein, we briefly reviewed the history of gold-catalyzed carbonylation reactions, including carbonylation of olefins, methanol, and amines. It also highlights our recent works on synergistic Au/Cu-catalyzed oxidative carbonylation of amines.
1 Introduction
2 Carbonylation of Olefins
3 Carbonylation of Methanol
4 Carbonylation of Amines
4.1 Gold Catalysis
4.2 Bimetallic Au–M catalysis
5 Conclusion and Outlook
Key words
gold -
catalysis -
carbonylation -
olefins -
methanol -
amines
Publication History
Received: 02 March 2022
Accepted after revision: 17 March 2022
Accepted Manuscript online: 17 March 2022
Article published online: 25 April 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Herrera RP,
Gimeno MC.
Chem. Rev. 2021; 121: 8311
1b
Hutchings GJ.
Gold Bull. 2004; 37: 3
1c
Hashmi AS. K,
Hutchings GJ.
Angew. Chem. Int. Ed. 2006; 45: 7896
2
Bond GC,
Sermon PA,
Webb G,
Buchanan DA,
Wells PB.
J. Chem. Soc., Chem. Commun. 1973; 444b
3
Haruta M,
Kobayashi T,
Sano H,
Yamada N.
Chem. Lett. 1987; 16: 405
4
Hutchings GJ.
J. Catal. 1985; 96: 292
5
Ito Y,
Sawamura M,
Hayashi T.
J. Am. Chem. Soc. 1986; 108: 6405
6a
Gorin J,
Sherry BD,
Toste FD.
Chem. Rev. 2008; 108: 3351
6b
Li Z,
Brouwer C,
He C.
Chem. Rev. 2008; 108: 3239
6c
Zhang Y,
Cui X,
Shi F,
Deng Y.
Chem. Rev. 2012; 112: 2467
6d
Lu Z,
Li T,
Mudshinge SR,
Xu B,
Hammond GB.
Chem. Rev. 2021; 121: 8452
6e
Liu X,
He L,
Liu Y.-M,
Cao Y.
Acc. Chem. Res. 2014; 47: 793
6f
Hutchings GJ.
ACS Cent. Sci. 2018; 4: 1095
6g
Witzel S,
Hashmi AS. K,
Xie J.
Chem. Rev. 2021; 121: 8868
6h
Hopkinson MN,
Gee AD,
Gouverneur V.
Chem. Eur. J. 2011; 17: 8248
6i
Reyes RL,
Iwai T,
Sawamura M.
Chem. Rev. 2021; 121: 8926
6j
Ye L.-W,
Zhu X.-Q,
Sahani RL,
Xu Y,
Qian P.-C,
Liu R.-S.
Chem. Rev. 2021; 121: 9039
7a
Kharasch MS,
Isbell HS.
J. Am. Chem. Soc. 1930; 52: 2919
7b
Dell’Amico DB,
Labella L,
Marchetti F,
Samaritani S.
Coord. Chem. Rev. 2010; 254: 635
7c
Sorbelli D,
Belpassi L,
Tarantelli F,
Belanzoni P.
Inorg. Chem. 2018; 57: 6161
7d
Gatineau D,
Lesage D,
Clavier H,
Dossmann H,
Chan CH,
Milet A,
Memboeuf A,
Cole RB,
Gimbert Y.
Dalton Trans. 2018; 47: 15497
8
Xu Q,
Imamura Y,
Fujiwara M,
Souma Y.
J. Org. Chem. 1997; 62: 1594
9
Filardo G,
Galia A,
Rivetti F,
Scialdone O,
Silvestri G.
Electrochim. Acta 1997; 42: 1961
10a
Funakawa A,
Yamanaka I,
Takenaka S,
Otsuka K.
J. Am. Chem. Soc. 2004; 126: 5346
10b
Funakawa A,
Yamanaka I,
Otsuka K.
J. Phys. Chem. B 2005; 109: 9140
11
Figueiredo MC,
Trieu V,
Eiden S,
Koper MT. M.
J. Am. Chem. Soc. 2017; 139: 14693
12
Figueiredo MC,
Trieu V,
Eiden S,
Heijl J,
Koper MT. M.
ACS Catal. 2018; 8: 3087
13
Li J,
Hu J,
Gu Y,
Mei F,
Li T,
Li G.
J. Mol. Catal. A: Chem. 2011; 340: 53
14
Li J,
Hu J,
Li G.
Catal. Commun. 2011; 12: 1401
15
Xu B,
Madix RJ,
Friend CM.
J. Am. Chem. Soc. 2011; 133: 20378
16a
Zoeller JR,
Singleton AH,
Tustin GC,
Carver DL.
US 6506933 2003
16b
Zoeller JR,
Singleton AH,
Tustin GC,
Carver DL.
US 6509293 2003
17
Kalck P,
Le Berre C,
Serp P.
Coord. Chem. Rev. 2020; 402: 213078
18
Goguet A,
Hardacre C,
Harvey I,
Narasimharao K,
Saih Y,
Sa J.
J. Am. Chem. Soc. 2009; 131: 6973
19
Martinez-Ramirez Z,
Flores-Escamilla GA,
Berumen-España GS,
Jimenez-Lam SA,
Handy BE,
Cardenas-Galindo MG,
Sarmiento-Lopez AG,
Fierro-Gonzalez JC.
Appl. Catal., A 2015; 502: 254
20
Almeida K,
Chagoya K,
Felix A,
Jiang T,
Le D,
Rawal TB,
Evans PE,
Wurch M,
Yamaguchi K,
Dowben PA,
Bartels L,
Rahman TS,
Blair RG.
J. Phys.: Condens. Matter 2022; 34: 104005
21a
Cao Y,
Zhang X,
He L.
J. Mol. Catal. (China) 2020; 34: 182
21b
Cao Y,
He L,
Xia C.
Oxidative Carbonylation of Amines, In The Chemical Transformations of C1 Compounds Weinheim: Wiley-VCH; 2022: 687
22
Shi F,
Deng Y.
Chem. Commun. 2001; 443
23
Shi F,
Deng Y,
Yang H,
SiMa T.
Chem. Commun. 2001; 345
24
Shi F,
Deng Y.
J. Catal. 2002; 211: 548
25
Jin L,
Weinberger DS,
Melaimi M,
Moore CE,
Rheingold AL,
Bertrand G.
Angew. Chem. Int. Ed. 2014; 53: 9059
26
Mitsudome T,
Noujima A,
Mizugaki T,
Jitsukawa K,
Kaneda K.
Chem. Commun. 2012; 48: 11733
27
Noujima A,
Mitsudome T,
Mizugaki T,
Jitsukawa K,
Kaneda K.
Green Chem. 2013; 15: 608
28
Zhu B,
Angelici RJ.
J. Am. Chem. Soc. 2006; 128: 14460
29a
Li Y,
Pan WX,
Wong WT.
J. Cluster Sci. 2002; 13: 223
29b
Li Y,
Wong W.-T.
Eur. J. Inorg. Chem. 2003; 2651
30
Smirnova ES,
Munoz MolinaJ. M,
Johnson A,
Bandeira NA. G,
Bo C,
Echavarren AM.
Angew. Chem. Int. Ed. 2016; 55: 7487
31
Duan H,
Zeng Y,
Yao X,
Xing P,
Liu J,
Zhao Y.
Chem. Mater. 2017; 29: 3671
32
Cao Y,
Yang JG,
Deng Y,
Wang S,
Liu Q,
Shen C,
Lu W,
Che CM,
Chen Y,
He L.
Angew. Chem. Int. Ed. 2020; 59: 2080
33
Cao Y,
Huang Y,
He L.
ChemSusChem 2022; 15: e202102400