Subscribe to RSS
DOI: 10.1055/a-1827-4113
Comorbidities in Mild Autonomous Cortisol Secretion – A Clinical Review of Literature
Abstract
Mild autonomous cortisol secretion (mACS) is a state of cortisol excess usually associated with existence of adrenal incidentaloma. Because of the lack of symptoms of the disease, the biochemical evaluation is the most important to determine a diagnosis. However, scientific societies have different diagnostic criteria for mACS, which makes the treatment of this disease and using results of original papers in daily practice more difficult. Chronic hypercortisolemic state, even if mild, may lead to diseases that are mostly connected with overt Cushing’s syndrome. Some of them can cause a higher mortality of patients with mACS and those problems need to be addressed. In this review we describe the comorbidities associated with mACS: cardiovascular disorders, arterial hypertension, diabetes mellitus, insulin resistance, dyslipidemia, obesity, metabolic syndrome, non-alcoholic fatty liver disease, vertebral fractures and osteoporosis. The point of this paper is to characterise them and determine if and how these conditions should be managed. Two databases – PubMed and Web of Science were searched. Even though the evidence are scarce, this is an attempt to lead clinicians through the problems associated with this enigmatic condition.
Key words
mild autonomous cortisol secretion - subclinical hypercortisolism - adrenal incidentaloma - vertebral fractures - osteoporosis - arterial hypertension - diabetes mellitus - insulin resistance - obesity - metabolic syndromePublication History
Received: 26 September 2021
Received: 09 March 2022
Accepted: 01 April 2022
Article published online:
11 July 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lee SH, Song KH, Kim J. et al. New diagnostic criteria for subclinical hypercortisolism using postsurgical hypocortisolism: The co-work of Adrenal Research study. Clin Endocrinol 2017; 86: 10-18
- 2 Fassnacht M, Arlt W, Bancos I. et al. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol 2016; 175: G1-G34
- 3 NIH state-of-the-science statement on management of the clinically inapparent adrenal mass (“incidentaloma”). 2002; 19
- 4 Zeiger MA, Thompson GB, Duh Q-Y. et al. American Association of Clinical Endocrinologists and American Association of Endocrine Surgeons Medical Guidelines for the management of adrenal incidentalomas. Endocr Pract 2009; 15: 1-20
- 5 Terzolo M, Stigliano A, Chiodini I. et al. AME position statement on adrenal incidentaloma. Eur J Endocrinol 2011; 164: 851-870
- 6 Ebbehoj A, Li D, Kaur RJ. et al. Epidemiology of adrenal tumours in Olmsted County, Minnesota, USA: A population-based cohort study. Lancet Diabetes Endocrinol 2020; 8: 894-902
- 7 Di Dalmazi G, Pasquali R. Adrenal adenomas, subclinical hypercortisolism, and cardiovascular outcomes. Curr Opin Endocrinol Diabetes Obes 2015; 22: 163-168
- 8 Rossi R, Tauchmanova L, Luciano A. et al. Subclinical Cushing’s syndrome in patients with adrenal incidentaloma: Clinical and biochemical features. J Clin Endocrinol Metab 2000; 85: 1440-1448
- 9 Francucci CM, Pantanetti P, Garrapa GG. et al. Bone metabolism and mass in women with Cushing’s syndrome and adrenal incidentaloma. Clin Endocrinol 2002; 57: 587-593
- 10 Chiodini I, Mascia ML, Muscarella S. et al. Subclinical hypercortisolism among outpatients referred for osteoporosis. Ann Intern Med 2007; 147: 541
- 11 Chiodini I, Torlontano M, Carnevale V. et al. Bone loss rate in adrenal incidentalomas: A longitudinal study. J Clin Endocrinol Metab 2001; 86: 5337-5341
- 12 Kalpakcioglu BB, Engelke K, Genant HK. Advanced imaging assessment of bone fragility in glucocorticoid-induced osteoporosis. Bone 2011; 48: 1221-1231
- 13 dos Santos CV, Vieira Neto L, Madeira M. et al. Bone density and microarchitecture in endogenous hypercortisolism. Clin Endocrinol 2015; 83: 468-474
- 14 Morelli V, Eller-Vainicher C, Salcuni AS. et al. Risk of new vertebral fractures in patients with adrenal incidentaloma with and without subclinical hypercortisolism: A multicenter longitudinal study. J Bone Miner Res 2011; 26: 1816-1821
- 15 Chiodini I, Guglielmi G, Battista C. et al. Spinal volumetric bone mineral density and vertebral fractures in female patients with adrenal incidentalomas: The effects of subclinical hypercortisolism and gonadal status. J Clin Endocrinol Metab 2004; 89: 2237-2241
- 16 Torlontano M, Chiodini I, Pileri M. et al. Altered bone mass and turnover in female patients with adrenal incidentaloma: The effect of subclinical hypercortisolism. J Clin Endocrinol Metab 1999; 84: 2381-2385
- 17 Tauchmanova L, Rossi R, Nuzzo V. et al. Bone loss determined by quantitative ultrasonometry correlates inversely with disease activity in patients with endogenous glucocorticoid excess due to adrenal mass. Eur J Endocrinol 2001; 145: 241-247
- 18 Chiodini I, Tauchmanovà L, Torlontano M. et al. Bone involvement in eugonadal male patients with adrenal incidentaloma and subclinical hypercortisolism. J Clin Endocrinol Metab 2002; 87: 5491-5494
- 19 Chiodini I, Viti R, Coletti F. et al. Eugonadal male patients with adrenal incidentalomas and subclinical hypercortisolism have increased rate of vertebral fractures. Clin Endocrinol 2009; 70: 208-213
- 20 Chiodini I, Morelli V, Masserini B. et al. Bone mineral density, prevalence of vertebral fractures, and bone quality in patients with adrenal incidentalomas with and without subclinical hypercortisolism: An Italian multicenter study. J Clin Endocrinol Metab 2009; 94: 3207-3214
- 21 Eller-Vainicher C, Morelli V, Ulivieri FM. et al. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Miner Res 2012; 27: 2223-2230
- 22 Lasco A, Catalano A, Pilato A. et al. Subclinical hypercortisol-assessment of bone fragility: Experience of single osteoporosis center in Sicily. Eur Rev Med Pharmacol Sci 2014; 18: 352-358
- 23 Ognjanović S, Macut D, Petakov M. et al. The occurrence of subclinical hypercortisolism and osteoporosis in patients with incidentally discovered unilateral and bilateral adrenal tumors. J Med Biochem 2016; 35: 401-409
- 24 Vassilatou E, Vryonidou A, Ioannidis D. et al. Bilateral adrenal incidentalomas differ from unilateral adrenal incidentalomas in subclinical cortisol hypersecretion but not in potential clinical implications. Eur J Endocrinol 2014; 171: 37-45
- 25 Harvey NC, Glüer CC, Binkley N. et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 2015; 78: 216-224
- 26 Vinolas H, Grouthier V, Mehsen-Cetre N. et al. Assessment of vertebral microarchitecture in overt and mild Cushing’s syndrome using trabecular bone score. Clin Endocrinol 2018; 89: 148-154
- 27 Leib ES, Winzenrieth R. Bone status in glucocorticoid-treated men and women. Osteoporos Int 2016; 27: 39-48
- 28 Silva BC, Walker MD, Abraham A. et al. Trabecular bone score is associated with volumetric bone density and microarchitecture as assessed by central QCT and HRpQCT in Chinese American and White Women. J Clin Densitom 2013; 16: 554-561
- 29 McCloskey EV, Odén A, Harvey NC. et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 2016; 31: 940-948
- 30 Crans GG, Genant HK, Krege JH. Prognostic utility of a semiquantitative spinal deformity index. Bone 2005; 37: 175-179
- 31 Genant HK, Delmas PD, Chen P. et al. Severity of vertebral fracture reflects deterioration of bone microarchitecture. Osteoporos Int 2007; 18: 69-76
- 32 Morelli V, Eller-Vainicher C, Palmieri S. et al. Prediction of vertebral fractures in patients with monolateral adrenal incidentalomas. J Clin Endocrinol Metab 2016; 101: 2768-2775
- 33 Morelli V, Reimondo G, Giordano R. et al. Long-term follow-up in adrenal incidentalomas: An Italian multicenter study. J Clin Endocrinol Metab 2014; 99: 827-834
- 34 Di Dalmazi G, Vicennati V, Garelli S. et al. Cardiovascular events and mortality in patients with adrenal incidentalomas that are either non-secreting or associated with intermediate phenotype or subclinical Cushing’s syndrome: A 15-year retrospective study. Lancet Diabetes Endocrinol 2014; 2: 396-405
- 35 Debono M, Bradburn M, Bull M. et al. Cortisol as a marker for increased mortality in patients with incidental adrenocortical adenomas. J Clin Endocrinol Metab 2014; 99: 4462-4470
- 36 Tabarin A, Bardet S, Bertherat J. et al. Exploration and management of adrenal incidentalomas. Ann Endocrinol (Paris) 2008; 69: 487-500
- 37 Chiodini I, Francucci CM, Scillitani A. Densitometry in glucocorticoid-induced osteoporosis. J Endocrinol Investig 2008; 31: 33-37
- 38 Ahn SH, Kim JH, Cho YY. et al. The effects of cortisol and adrenal androgen on bone mass in Asians with and without subclinical hypercortisolism. Osteoporos Int 2019; 30: 1059-1069
- 39 Tauchmanova L, Pivonello R, de Martino MC. et al. Effects of sex steroids on bone in women with subclinical or overt endogenous hypercortisolism. Eur J Endocrinol 2007; 157: 359-366
- 40 Morelli V, Masserini B, Salcuni AS. et al. Subclinical hypercortisolism: Correlation between biochemical diagnostic criteria and clinical aspects. Clin Endocrinol 2010; 73: 161-166
- 41 Siggelkow H, Etmanski M, Bozkurt S. et al. Genetic polymorphisms in 11β-hydroxysteroid dehydrogenase type 1 correlate with the postdexamethasone cortisol levels and bone mineral density in patients evaluated for osteoporosis. J Clin Endocrinol Metab 2014; 99: E293-E302
- 42 Szappanos Á, Patócs A, Gergics P. et al. The 83,557insA variant of the gene coding 11β-hydroxysteroid dehydrogenase type 1 enzyme associates with serum osteocalcin in patients with endogenous Cushing’s syndrome. J Steroid Biochem Mol Biol 2011; 123: 79-84
- 43 Kim B-J, Kwak MK, Ahn SH. et al. The association of cortisol and adrenal androgen with trabecular bone score in patients with adrenal incidentaloma with and without autonomous cortisol secretion. Osteoporos Int 2018; 29: 2299-2307
- 44 Di Dalmazi G, Vicennati V, Rinaldi E. et al. Progressively increased patterns of subclinical cortisol hypersecretion in adrenal incidentalomas differently predict major metabolic and cardiovascular outcomes: A large cross-sectional study. Eur J Endocrinol 2012; 166: 669-677
- 45 Vassilatou E, Vryonidou A, Michalopoulou S. et al. Hormonal activity of adrenal incidentalomas: Results from a long-term follow-up study. Clin Endocrinol 2009; 70: 674-679
- 46 Androulakis II, Kaltsas GA, Kollias GE. et al. Patients with apparently nonfunctioning adrenal incidentalomas may be at increased cardiovascular risk due to excessive cortisol secretion. J Clin Endocrinol Metab 2014; 99: 2754-2762
- 47 Sereg M, Szappanos Á, Tőke J. et al. Atherosclerotic risk factors and complications in patients with non-functioning adrenal adenomas treated with or without adrenalectomy: A long-term follow-up study. Eur J Endocrinol 2009; 160: 647-655
- 48 Petramala L, Olmati F, Concistrè A. et al. Cardiovascular and metabolic risk factors in patients with subclinical Cushing. Endocrine 2020; 70: 150-163
- 49 Morelli V, Palmieri S, Lania A. et al. Cardiovascular events in patients with mild autonomous cortisol secretion: Analysis with artificial neural networks. Eur J Endocrinol 2017; 177: 73-83
- 50 Patrova J, Kjellman M, Wahrenberg H. et al. Increased mortality in patients with adrenal incidentalomas and autonomous cortisol secretion: A 13-year retrospective study from one center. Endocrine 2017; 58: 267-275
- 51 Prete A, Subramanian A, Bancos I. et al. Cardiometabolic disease burden and steroid excretion in benign adrenal tumors: A cross-sectional multicenter study. Ann Intern Med 2022; 175: 325-334
- 52 Zhang CD, Li D, Kaur RJ. et al. Cardiometabolic outcomes and mortality in patients with adrenal adenomas in a population-based setting. J Clin Endocrinol Metab 2021; 106: 3320-3330
- 53 Ortiz R, Joseph JJ, Lee R. et al. Type 2 diabetes and cardiometabolic risk may be associated with increase in DNA methylation of FKBP5. Clin Epigenetics 2018; 10
- 54 Imga NN, Topcuoglu C, Berker D. et al. Serum amyloid A, paraoxonase-1 activity, and apolipoprotein concentrations as biomarkers of subclinical atherosclerosis risk in adrenal incidentaloma patients. Arch Med Res 2018; 49: 182-190
- 55 Shufelt C, Bretsky P, Almeida CM. et al. DHEA-S levels and cardiovascular disease mortality in postmenopausal women: Results from the National Institutes of Health—National Heart, Lung, and Blood Institute (NHLBI)-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). J Clin Endocrinol Metab 2010; 95: 4985-4992
- 56 Pereg D, Gow R, Mosseri M. et al. Hair cortisol and the risk for acute myocardial infarction in adult men. Stress 2011; 14: 73-81
- 57 Pereg D, Chan J, Russell E. et al. Cortisol and testosterone in hair as biological markers of systolic heart failure. Psychoneuroendocrinology 2013; 38: 2875-2882
- 58 Erbil Y, Ozbey N, Barbaros U. et al. Cardiovascular risk in patients with nonfunctional adrenal incidentaloma: Myth or reality?. World J Surg 2009; 33: 2099-2105
- 59 Tauchmanovà L, Rossi R, Biondi B. et al. Patients with subclinical Cushing’s syndrome due to adrenal adenoma have increased cardiovascular risk. J Clin Endocrinol Metab 2002; 87: 4872-4878
- 60 Neary NM, Booker OJ, Abel BS. et al. Hypercortisolism is associated with increased coronary arterial atherosclerosis: Analysis of noninvasive coronary angiography using multidetector computerized tomography. J Clin Endocrinol Metab 2013; 98: 2045-2052
- 61 Iacobellis G, Petramala L, Barbaro G. et al. Epicardial fat thickness and left ventricular mass in subjects with adrenal incidentaloma. Endocrine 2013; 44: 532-536
- 62 Sbardella E, Minnetti M, D’Aluisio D. et al. Cardiovascular features of possible autonomous cortisol secretion in patients with adrenal incidentalomas. Eur J Endocrinol 2018; 178: 501-511
- 63 Kamenický P, Redheuil A, Roux C. et al. Cardiac structure and function in Cushing’s syndrome: A cardiac magnetic resonance imaging study. J Clin Endocrinol Metab 2014; 99: E2144-E2153
- 64 di Dalmazi G, Vicennati V, Pizzi C. et al. Prevalence and incidence of atrial fibrillation in a large cohort of adrenal incidentalomas: A long-term study. J Clin Endocrinol metab 2020; 105
- 65 Costa DS, Conceição FL, Leite NC. et al. Prevalence of subclinical hypercortisolism in type 2 diabetic patients from the Rio de Janeiro Type 2 Diabetes Cohort Study. J Diabetes Complicat 2016; 30: 1032-1038
- 66 Kumari M, Shipley M, Stafford M. et al. Association of diurnal patterns in salivary cortisol with all-cause and cardiovascular mortality: Findings from the Whitehall II Study. J Clin Endocrinol Metab 2011; 96: 1478-1485
- 67 Vogelzangs N, Beekman ATF, Milaneschi Y. et al. Urinary cortisol and six-year risk of all-cause and cardiovascular mortality. J Clin Endocrinol Metab 2010; 95: 4959-4964
- 68 Ronaldson A, Kidd T, Poole L. et al. Diurnal cortisol rhythm is associated with adverse cardiac events and mortality in coronary artery bypass patients. J Clin Endocrinol Metab 2015; 100: 3676-3682
- 69 Mullan K, Black N, Thiraviaraj A. et al. Is there value in routine screening for Cushing’s syndrome in patients with diabetes?. J Clin Endocrinol Metab 2010; 95: 2262-2265
- 70 Chiodini I, Torlontano M, Scillitani A. et al. Association of subclinical hypercortisolism with type 2 diabetes mellitus: A case-control study in hospitalized patients. Eur J Endocrinol 2005; 153: 837-844
- 71 Leibowitz G, Tsur A, Chayen SD. et al. Pre-clinical Cushing’s syndrome: An unexpected frequent cause of poor glycaemic control in obese diabetic patients. Clin Endocrinol 1996; 44: 717-722
- 72 Reimondo G, Pia A, Allasino B. et al. Screening of Cushing’s syndrome in adult patients with newly diagnosed diabetes mellitus. Clin Endocrinol 2007; 67: 225-229
- 73 Terzolo M, Reimondo G, Chiodini I. et al. Screening of Cushing’s syndrome in outpatients with type 2 diabetes: Results of a prospective multicentric study in Italy. J Clin Endocrinol Metab 2012; 97: 3467-3475
- 74 Taniguchi T, Hamasaki A, Okamoto M. Subclinical hypercortisolism in hospitalized patients with type 2 diabetes mellitus. Endocrine J 2008; 55: 429-432
- 75 Murakami H, Nigawara T, Sakihara S. et al. The frequency of type 2 diabetic patients who meet the endocrinological screening criteria of subclinical Cushing’s disease. Endocrine J 2010; 57: 267-272
- 76 Terzolo M, Bovio S, Reimondo G. et al. Subclinical Cushing’s syndrome in adrenal incidentalomas. Endocrinol Metab Clin North Am 2005; 34: 423-439
- 77 Terzolo M, Pia A, Alì A. et al. Adrenal incidentaloma: A new cause of the metabolic syndrome?. J Clin Endocrinol Metab 2002; 87: 998-1003
- 78 Terzolo M, Bovio S, Pia A. et al. Midnight serum cortisol as a marker of increased cardiovascular risk in patients with a clinically inapparent adrenal adenoma. Eur J Endocrinol 2005; 153: 307-315
- 79 Giordano R, Marinazzo E, Berardelli R. et al. Long-term morphological, hormonal, and clinical follow-up in a single unit on 118 patients with adrenal incidentalomas. Eur J Endocrinol 2010; 162: 779-785
- 80 Vukomanovic VR, Ignjatovic VD, Mihaljevic O. et al. Glucose and lipid abnormalities in patients with adrenal incidentalomas. Hell J Nucl Med 2019; 22: 7-14
- 81 Reincke M, Faßnacht M, Väth S. et al. Adrenal incidentalomas: A manifestation of the metabolic syndrome?. Endocr Res 1996; 22: 757-761
- 82 Evran M, Akkuş G, Berk Bozdoğan İ. et al. Carotid intima-media thickness as the cardiometabolic risk indicator in patients with nonfunctional adrenal mass and metabolic syndrome screening. Med Sci Monit 2016; 22: 991-997
- 83 Ivović M, Marina LV, Vujović S. et al. Nondiabetic patients with either subclinical Cushing’s or nonfunctional adrenal incidentalomas have lower insulin sensitivity than healthy controls: Clinical implications. Metabolism 2013; 62: 786-792
- 84 Cansu GB, Atılgan S, Balcı MK. et al. Which type 2 diabetes mellitus patients should be screened for subclinical Cushing’s syndrome?. Hormones 2017; 16: 22-32
- 85 Budyal S, Jadhav SS, Kasaliwal R. et al. Is it worthwhile to screen patients with type 2 diabetes mellitus for subclinical Cushing’s syndrome?. Endocr Connect 2015; 4: 242-248
- 86 Krarup T, Krarup T, Hagen C. Do patients with type 2 diabetes mellitus have an increased prevalence of Cushing’s syndrome?. Diabetes/Metab Res Rev 2012; 28: 219-227
- 87 Asao T, Oki K, Yoneda M. et al. Hypothalamic-pituitary-adrenal axis activity is associated with the prevalence of chronic kidney disease in diabetic patients. Endocrine J 2016; 63: 119-126
- 88 Notarianni E. Cortisol: Mediator of association between Alzheimer’s disease and diabetes mellitus?. Psychoneuroendocrinology 2017; 81: 129-137
- 89 Peppa M, Boutati E, Koliaki C. et al. Insulin resistance and metabolic syndrome in patients with nonfunctioning adrenal incidentalomas: A cause-effect relationship?. Metabolism 2010; 59: 1435-1441
- 90 Peppa M, Koliaki C, Raptis SA. Adrenal incidentalomas and cardiometabolic morbidity: An emerging association with serious clinical implications. J Intern Med 2010; 268: 555-566
- 91 Masserini B, Morelli V, Palmieri S. et al. Lipid abnormalities in patients with adrenal incidentalomas: role of subclinical hypercortisolism and impaired glucose metabolism. J Endocrinol Investig 2015; 38: 623-628
- 92 Kim JH, Kwak MK, Ahn SH. et al. Alteration in skeletal muscle mass in women with subclinical hypercortisolism. Endocrine 2018; 61: 134-143
- 93 Delivanis DA, Iñiguez-Ariza NM, Zeb MH. et al. Impact of hypercortisolism on skeletal muscle mass and adipose tissue mass in patients with adrenal adenomas. Clin Endocrinol 2018; 88: 209-216
- 94 Naka M, Kadoya M, Kosaka-Hamamoto K. et al. Overestimation of glomerular filtration rate calculated from serum creatinine as compared with cystatin C in patients with subclinical hypercortisolism: Hyogo Adrenal Metabolic Registry. Endocrine J 2020; 67: 469-476
- 95 Zoppini G, Targher G, Venturi C. et al. Relationship of nonalcoholic hepatic steatosis to overnight low-dose dexamethasone suppression test in obese individuals. Clin Endocrinol 2004; 61: 711-715
- 96 Targher G, Arcaro G. Non-alcoholic fatty liver disease and increased risk of cardiovascular disease. Atherosclerosis 2007; 191: 235-240
- 97 Targher G, Bertolini L, Zoppini G. et al. Relationship of non-alcoholic hepatic steatosis to cortisol secretion in diet-controlled Type 2 diabetic patients. Diabetic Medicine 2005; 22: 1146-1150
- 98 Westerbacka J, Yki-Järvinen H, Vehkavaara S. et al. Body fat distribution and cortisol metabolism in healthy men: Enhanced 5β-reductase and lower cortisol/cortisone metabolite ratios in men with fatty liver. J Clin Endocrinol Metab 2003; 88: 4924-4931
- 99 Hubel J, Schmidt S, Mason R. et al. Influence of plasma cortisol and other laboratory parameters on nonalcoholic fatty liver disease. Hormone Metab Res 2015; 47: 479-484
- 100 Papanastasiou L, Pappa T, Samara C. et al. Nonalcoholic fatty liver disease in subjects with adrenal incidentaloma. Eur J Clin Investig 2012; 42: 1165-1172
- 101 Salcuni AS, Morelli V, Eller Vainicher C. et al. Adrenalectomy reduces the risk of vertebral fractures in patients with monolateral adrenal incidentalomas and subclinical hypercortisolism. Eur J Endocrinol 2016; 174: 261-269
- 102 Randazzo ME, Grossrubatscher E, Dalino Ciaramella P. et al. Spontaneous recovery of bone mass after cure of endogenous hypercortisolism. Pituitary 2012; 15: 193-201
- 103 Toniato A, Merante-Boschin I, Opocher G. et al. Surgical versus conservative management for subclinical Cushing syndrome in adrenal incidentalomas: A prospective randomized study. Ann Surg 2009; 249: 388-391
- 104 Tauchmanova L, Guerra E, Pivonello R. et al. Weekly clodronate treatment prevents bone loss and vertebral fractures in women with subclinical Cushing’s syndrome. J Endocrinol Investig 2009; 32: 390-394
- 105 Numakura K, Nara T, Kanda S. et al. Overweight patients less improved kidney function after laparoscopic surgery for adrenocortical adenoma with excess cortisol secretion. Front Endocrinol 2019; 10
- 106 Chiodini I, Morelli V, Salcuni AS. et al. Beneficial metabolic effects of prompt surgical treatment in patients with an adrenal incidentaloma causing biochemical hypercortisolism. J Clin Endocrinol Metab 2010; 95: 2736-2745
- 107 Iacobone M, Citton M, Viel G. et al. Adrenalectomy may improve cardiovascular and metabolic impairment and ameliorate quality of life in patients with adrenal incidentalomas and subclinical Cushing’s syndrome. Surgery 2012; 152: 991-997
- 108 Tsuiki M, Tanabe A, Takagi S. et al. Cardiovascular risks and their long-term clinical outcome in patients with subclinical Cushing’s syndrome. Endocrine J 2008; 55: 737-745
- 109 Bernini G, Moretti A, Iacconi P. et al. Anthropometric, haemodynamic, humoral and hormonal evaluation in patients with incidental adrenocortical adenomas before and after surgery. Eur J Endocrinol 2003; 148: 213-219
- 110 Papierska L, Ćwikła J, Rabijewski M. et al. Bilateral adrenal incidentaloma with subclinical hypercortisolemia: Indications for surgery. Pol Arch Med Wewn 2014; 124: 387-394
- 111 Bancos I, Alahdab F, Crowley RK. et al. THERAPY OF ENDOCRINE DISEASE: Improvement of cardiovascular risk factors after adrenalectomy in patients with adrenal tumors and subclinical Cushing’s syndrome: A systematic review and meta-analysis. Eur J Endocrinol 2016; 175: R283-R295
- 112 Erbil Y, Ademoğlu E, Özbey N. et al. Evaluation of the cardiovascular risk in patients with subclinical Cushing syndrome before and after surgery. World J Surg 2006; 30: 1665-1671
- 113 Perogamvros I, Vassiliadi DA, Karapanou O. et al. Biochemical and clinical benefits of unilateral adrenalectomy in patients with subclinical hypercortisolism and bilateral adrenal incidentalomas. Eur J Endocrinol 2015; 173: 719-725
- 114 Raffaelli M, de Crea C, D’Amato G. et al. Outcome of adrenalectomy for subclinical hypercortisolism and Cushing syndrome. Surgery 2016; 161: 264-271