Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(21): 4673-4682
DOI: 10.1055/a-1829-0262
DOI: 10.1055/a-1829-0262
feature
Catalyst-Controlled Chemodivergent [3+3] and [3+2] Formal Cycloadditions of Azomethine Ylides with Diphenylcyclopropenone
We thank the Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER, UE) for financial support (Agencia Estatal de Investigación/Project PGC2018-098660-B-100). J. C. thanks the Ministerio de Educación Cultura y Deportes for a FPU fellowship. A. P. thanks the MICINN for a predoctoral fellowship.

Dedicated to Prof. Joan Bosch on the occasion of his retirement
Abstract
Chemodivergent cycloadditions of azomethine ylides with diphenylcyclopropenone involving either Cu-catalyzed [3+3] or Ag-catalyzed [3+2] processes have been developed. These transformations provide a highly efficient method for the preparation of a variety of aromatic substituted dihydropyridinones and dihydropyrrolones with excellent regio and diasteroselectivities.
Key words
chemodivergent reactions - [3+3] and [3+2] cycloadditions - azomethine ylide - cyclopropenoneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1829-0262.
- Supporting Information
Publication History
Received: 28 March 2022
Accepted after revision: 19 April 2022
Accepted Manuscript online:
19 April 2022
Article published online:
09 June 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Adrio J, Carretero JC. Chem. Commun. 2014; 50: 12434
- 1b Narayan R, Potowski M, Jia Z.-J, Antonchick AP, Waldmann H. Acc. Chem. Res. 2014; 47: 1296
- 1c Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
- 1d Bdiri B, Zhao B.-J, Zhou Z.-M. Tetrahedron: Asymmetry 2017; 28: 876
- 1e Döndas HA, Retamosa MG, Sansano JM. Synthesis 2017; 49: 12434
- 1f Arrastia I, Arrieta A, Cossio FP. Eur. J. Org. Chem. 2018; 5889
- 1g Fang X, Wang C.-J. Org. Biomol. Chem. 2018; 16: 2591
- 1h Adrio J, Carretero JC. Chem. Commun. 2019; 55: 11979
- 1i Wei L, Chang X, Wang C.-J. Acc. Chem. Res. 2020; 53: 1084
- 2a Hong B.-C, Gupta AK, Wu M.-F, Liao J.-H, Lee G.-H. Org. Lett. 2003; 5: 1689
- 2b Potowski M, Bauer JO, Strohmann C, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2012; 51: 9512
- 2c Potowski M, Antonchick AP, Waldmann H. Chem. Commun. 2013; 49: 7800
- 2d He Z.-L, Teng H-L, Wang C.-J. Angew. Chem. Int. Ed. 2013; 52: 2934
- 3a Teng H.-L, Yao L, Wang CJ. J. Am. Chem. Soc. 2014; 136: 4075
- 3b Liu H, Wu Y, Zhao Y, Li Z, Zhang L, Yang W, Jiang H, Jing C, Hao Y, Xiao Y, Guo H. J. Am. Chem. Soc. 2014; 136: 2625
- 4a Li Q.-J, Wei L, Wang C.-J. J. Am. Chem. Soc. 2014; 136: 8685
- 4b He L.-H, Sheong FK, Li Q.-J, Ling Z, Wang C.-J. Org. Lett. 2015; 17: 1365
- 5a Shi F, Zhu R.-Y, Dai W, Wang C.-S, Tu S.-J. Chem Eur. J. 2014; 20: 2597
- 5b Dai W, Lu H, Li X, Shi F, Tu S.-J. Chem. Eur. J. 2014; 20: 11382
- 5c Liu Y.-Z, Shang S.-J, Zhu J.-Y, Yang W.-L, Ping D. Adv. Synth. Cat. 2018; 11: 2191
- 6 Wu Y, Qiao G, Liu H, Zhang L, Sun Z, Xiao Y, Guo H. RSC Adv. 2015; 5: 84290
- 7a Guo H, Liu H, Zhu F.-L, Na R, Jiang H, Wu Y, Zhang L, Li Z, Yu H, Wang B, Xiao Y, Hu X.-P, Wang M. Angew. Chem. Int. Ed. 2013; 52: 12641
- 7b Tong M.-C, Chen X, Tao H.-Y, Wang C.-J. Angew. Chem. Int. Ed. 2013; 52: 12377
- 8 Yuan C, Liu H, Gao Z, Zhou L, Feng Y, Xiao Y, Guo H. Org. Lett. 2015; 17: 26
- 9 Beletskaya IP, Najera C, Yus M. Chem. Soc. Rev. 2020; 49: 7101
- 10 Zhang L, Chen J.-J, Liu S.-S, Liang Y.-X, Zhao Y.-L. Adv. Synth. Catal. 2018; 360: 2172
- 11a Raiguru BP, Nayak S, Mishra DR, Das T, Mohapatra S, Mishra NP. Asian J. Org. Chem. 2020; 9: 1088
- 11b Wen S, Chen Y, Tian Q, Zhang Y, Cheng G. J. Org. Chem. 2022; 87: 1124
- 11c Wang X, Yu C, Atodiresei IL, Patureau FW. Org. Lett. 2022; 24: 1127
- 11d Jian Wu J, Gao W.-X, Huang X.-B, Zhou Y.-B, Miao-Chang Liu M.-C, Wu H.-Y. Org. Lett. 2020; 22: 5555
- 11e Xu J, Cao J, Fang C, Lu T, Du D. Org. Chem. Front. 2017; 4: 560
- 12 Lown J, Maloney TW, Dallas G. Can. J. Chem. 1970; 48: 584
- 13a Lown J, Smalley RK, Dallas G. J. Chem. Soc., Chem. Commun. 1968; 1543
- 13b Matsumoto K, Ikemi Y, Toda M, Kakehi A, Uchida T, Lown JW. Tetrahedron Lett. 1995; 36: 3011
- 14 Cao J, Fang R, Liu J.-Y, Lu H, Luo Y.-C, Xu P.-F. Chem. Eur. J. 2018; 24: 18863
- 15a Corpas J, Ponce A, Adrio J, Carretero JC. Org. Lett. 2018; 20: 3179
- 15b Molina A, Diaz-Tendero S, Adrio J, Carretero JC. Chem. Commun. 2020; 56: 5050
- 16 CCDC 2159443 (trans-3a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 17 CCDC 2159441 (rac-4g) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 18 After 30 min of reaction, lactone IV could be isolated in 16% yield and characterized by NMR and GC-MS (see Supporting Information for details), see: Hayashi Y, Nozaki H. Tetrahedron 1971; 27: 3085
- 19 For an example of activation of diphenylcyclopropenone with a silver salt, see: Xu J.-L, Tian H, Kang J.-H, Kang W.-X, Sun W, Sun R, Li Y.-M, Sun M. Org. Lett. 2020; 22: 6739
For recent reviews, see:
For a recent review, see:
For selected references, see: