Subscribe to RSS
DOI: 10.1055/a-1844-0267
Aktuelle Studien und Evidenz zum Cholangiokarzinom
Current Studies and Evidence in CholangiocarcinomaZusammenfassung
Cholangiokarzinome (CCA) stellen die zweithäufigsten primären Leberkarzinome dar und umfassen eine heterogene Gruppe aus intra- und extrahepatischen Gallenwegstumoren. Die Prognose der Patienten ist sowohl aufgrund einer hohen Rezidivrate als auch häufig später Diagnosestellung in fortgeschrittenen Stadien eingeschränkt. Den Goldstandard der kurativen Therapie bildet die komplette Resektion; sie erfordert komplex-onkologische Eingriffe mit ggf. vorgeschalteten Hypertrophieinduktionen der Restleber zur Sicherung einer postoperativ ausreichenden Leberfunktion. Als adjuvante Therapie ist eine 6-monatige Therapie mit Capecitabin etabliert. Die Therapielandschaft im fortgeschrittenen Stadium der Erkrankung befindet sich aufgrund neuer Daten aus klinischen Phase-II/III-Studien stetig im Wandel. Einerseits ebneten molekulare Analysen den Weg hin zu effektiven zielgerichteten Behandlungen von selektionierten CCA-Patienten mit u. a. Alterationen in FGFR2- oder IDH1-Signalwegen; andererseits erwiesen sich in aktuellen klinischen Studien immunonkologische Kombinationsansätze als effektive und sichere All-Comer-Therapien für die Behandlung eines unselektionierten Patientenkollektivs. Weitere Studien evaluieren sowohl Kombinationsbehandlungen als auch molekulare Stratifikation als neue Therapiekonzepte auch in früheren Erkrankungsstadien und werden die Therapielandschaft und Prognose der Patienten in Zukunft verbessern.
Abstract
Cholangiocarcinoma (CCA) is the second most common type of primary liver cancer and includes a group of intra- and extrahepatic bile tract cancers. Prognosis of patients with CCA remains poor due to high recurrence rates after curative resections and often late diagnosis in advanced stages of the disease. Curative therapy is a complete resection that requires complex surgical procedures and potentially pre-operative induction of liver hypertrophy to ensure sufficient postoperative liver function. Adjuvant therapy with capecitabine for 6 months is well established in clinical routine. The therapeutic landscape for advanced stages is constantly progressing, due to new results of clinical phase II/III trials. On the one hand, molecular analyses have paved the way to effective targeted therapies for subgroups of CCA patients with alterations in FGFR2- or IDH1-signaling. On the other hand, immune-oncological approaches in combination with chemotherapy have resulted in safe and effective treatments for unselected patient cohorts. Further studies will investigate molecular-driven as well as immune-combination treatments in earlier stages of the disease and will result in new therapy options and better prognosis for CCA patients in the near future.
Publication History
Received: 11 February 2022
Accepted after revision: 03 May 2022
Article published online:
21 July 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Everhart JE, Ruhl CE. Burden of digestive diseases in the United States Part III: Liver, biliary tract, and pancreas. Gastroenterology 2009; 136: 1134-1144
- 2 Bergquist A, von Seth E. Epidemiology of cholangiocarcinoma. Best Pract Res Clin Gastroenterol 2015; 29: 221-232
- 3 Cillo U, Fondevila C, Donadon M. et al. Surgery for cholangiocarcinoma. Liver Int 2019; 39 (01) 143-155
- 4 Jarnagin WR, Fong Y, DeMatteo RP. et al. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg 2001; 234: 507-517
- 5 Voesch S, Bitzer M, Blodt S. et al. S3-Leitlinie: Diagnostik und Therapie des hepatozellulären Karzinoms und biliärer Karzinome – Version 2.0 – Juni 2021, AWMF-Registernummer: 032–053OL. Z Gastroenterol 2022; 60: e131-e185
- 6 Raoof M, Dumitra S, Ituarte PHG. et al. Development and Validation of a Prognostic Score for Intrahepatic Cholangiocarcinoma. JAMA Surg 2017; 152: e170117
- 7 Schnitzbauer AA, Eberhard J, Bartsch F. et al. The MEGNA Score and Preoperative Anemia are Major Prognostic Factors After Resection in the German Intrahepatic Cholangiocarcinoma Cohort. Ann Surg Oncol 2020; 27: 1147-1155
- 8 de Graaf W, van Lienden KP, van Gulik TM. et al. (99m)Tc-mebrofenin hepatobiliary scintigraphy with SPECT for the assessment of hepatic function and liver functional volume before partial hepatectomy. J Nucl Med 2010; 51: 229-236
- 9 Stockmann M, Lock JF, Malinowski M. et al. The LiMAx test: a new liver function test for predicting postoperative outcome in liver surgery. HPB (Oxford) 2010; 12: 139-146
- 10 Guibal A, Renosi G, Rode A. et al. Shear wave elastography: An accurate technique to stage liver fibrosis in chronic liver diseases. Diagn Interv Imaging 2016; 97: 91-99
- 11 Hocquelet A, Frulio N, Gallo G. et al. Point-shear wave elastography predicts liver hypertrophy after portal vein embolization and postoperative liver failure. Diagn Interv Imaging 2018; 99: 371-379
- 12 Memeo R, Conticchio M, Deshayes E. et al. Optimization of the future remnant liver: review of the current strategies in Europe. Hepatobiliary Surg Nutr 2021; 10: 350-363
- 13 Li J, Moustafa M, Linecker M. et al. ALPPS for Locally Advanced Intrahepatic Cholangiocarcinoma: Did Aggressive Surgery Lead to the Oncological Benefit? An International Multi-center Study. Ann Surg Oncol 2020; 27: 1372-1384
- 14 Schadde E, Ardiles V, Robles-Campos R. et al. Early survival and safety of ALPPS: first report of the International ALPPS Registry. Ann Surg 2014; 260: 829-836
- 15 Olthof PB, Coelen RJS, Wiggers JK. et al. High mortality after ALPPS for perihilar cholangiocarcinoma: case-control analysis including the first series from the international ALPPS registry. HPB (Oxford) 2017; 19: 381-387
- 16 Birgin E, Rasbach E, Seyfried S. et al. Contralateral Liver Hypertrophy and Oncological Outcome Following Radioembolization with (90)Y-Microspheres: A Systematic Review. Cancers (Basel) 2020; 12: 294
- 17 Teo JY, Allen jr. JC, Ng DC. et al. A systematic review of contralateral liver lobe hypertrophy after unilobar selective internal radiation therapy with Y90. HPB (Oxford) 2016; 18: 7-12
- 18 Rizvi S, Khan SA, Hallemeier CL. et al. Cholangiocarcinoma – evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018; 15: 95-111
- 19 Edeline J, Benabdelghani M, Bertaut A. et al. Gemcitabine and Oxaliplatin Chemotherapy or Surveillance in Resected Biliary Tract Cancer (PRODIGE 12-ACCORD 18-UNICANCER GI): A Randomized Phase III Study. J Clin Oncol 2019; 37: 658-667
- 20 Ebata T, Hirano S, Konishi M. et al. Randomized clinical trial of adjuvant gemcitabine chemotherapy versus observation in resected bile duct cancer. Br J Surg 2018; 105: 192-202
- 21 Primrose JN, Fox RP, Palmer DH. et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol 2019; 20: 663-673
- 22 Ikeda M, Nakachi K, Konishi M. et al. Adjuvant S-1 versus observation in curatively resected biliary tract cancer: A phase III trial (JCOG1202: ASCOT). J Clin Oncol 2022; 40: 382-382
- 23 Yadav S, Xie H, Bin-Riaz I. et al. Neoadjuvant vs. adjuvant chemotherapy for cholangiocarcinoma: A propensity score matched analysis. Eur J Surg Oncol 2019; 45: 1432-1438
- 24 Le Roy B, Gelli M, Pittau G. et al. Neoadjuvant chemotherapy for initially unresectable intrahepatic cholangiocarcinoma. Br J Surg 2018; 105: 839-847
- 25 Riby D, Mazzotta AD, Bergeat D. et al. Downstaging with Radioembolization or Chemotherapy for Initially Unresectable Intrahepatic Cholangiocarcinoma. Ann Surg Oncol 2020; 27: 3729-3737
- 26 Darwish Murad S, Kim WR, Harnois DM. et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology 2012; 143: 88-98.e3
- 27 Mantel HT, Westerkamp AC, Adam R. et al. Strict Selection Alone of Patients Undergoing Liver Transplantation for Hilar Cholangiocarcinoma Is Associated with Improved Survival. PLoS One 2016; 11: e0156127
- 28 Sapisochin G, Rodriguez de Lope C, Gastaca M. et al. “Very early” intrahepatic cholangiocarcinoma in cirrhotic patients: should liver transplantation be reconsidered in these patients?. Am J Transplant 2014; 14: 660-667
- 29 Sapisochin G, Facciuto M, Rubbia-Brandt L. et al. Liver transplantation for “very early” intrahepatic cholangiocarcinoma: International retrospective study supporting a prospective assessment. Hepatology 2016; 64: 1178-1188
- 30 Lunsford KE, Javle M, Heyne K. et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series. Lancet Gastroenterol Hepatol 2018; 3: 337-348
- 31 Yang J, Wang J, Zhou H. et al. Efficacy and safety of endoscopic radiofrequency ablation for unresectable extrahepatic cholangiocarcinoma: a randomized trial. Endoscopy 2018; 50: 751-760
- 32 Gao DJ, Yang JF, Ma SR. et al. Endoscopic radiofrequency ablation plus plastic stent placement versus stent placement alone for unresectable extrahepatic biliary cancer: a multicenter randomized controlled trial. Gastrointest Endosc 2021; 94: 91-100.e2
- 33 Lee YN, Jeong S, Choi HJ. et al. The safety of newly developed automatic temperature-controlled endobiliary radiofrequency ablation system for malignant biliary strictures: A prospective multicenter study. J Gastroenterol Hepatol 2019; 34: 1454-1459
- 34 Yang J, Wang J, Zhou H. et al. Endoscopic radiofrequency ablation plus a novel oral 5-fluorouracil compound versus radiofrequency ablation alone for unresectable extrahepatic cholangiocarcinoma. Gastrointest Endosc 2020; 92: 1204-1212.e1
- 35 Labib PL, Davidson BR, Sharma RA. et al. Locoregional therapies in cholangiocarcinoma. Hepat Oncol 2017; 4: 99-109
- 36 Kuhlmann JB, Euringer W, Spangenberg HC. et al. Treatment of unresectable cholangiocarcinoma: conventional transarterial chemoembolization compared with drug eluting bead-transarterial chemoembolization and systemic chemotherapy. Eur J Gastroenterol Hepatol 2012; 24: 437-443
- 37 Valle J, Wasan H, Palmer DH. et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362: 1273-1281
- 38 Phelip JM, Edeline J, Blanc JF. et al. Modified FOLFIRINOX versus CisGem first-line chemotherapy for locally advanced non resectable or metastatic biliary tract cancer (AMEBICA)-PRODIGE 38: Study protocol for a randomized controlled multicenter phase II/III study. Dig Liver Dis 2019; 51: 318-320
- 39 Shroff RT, Javle MM, Xiao L. et al. Gemcitabine, Cisplatin, and nab-Paclitaxel for the Treatment of Advanced Biliary Tract Cancers: A Phase 2 Clinical Trial. JAMA Oncol 2019; 5: 824-830
- 40 Lamarca A, Palmer DH, Wasan HS. et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol 2021; 22: 690-701
- 41 Yoo C, Kim KP, Jeong JH. et al. Liposomal irinotecan plus fluorouracil and leucovorin versus fluorouracil and leucovorin for metastatic biliary tract cancer after progression on gemcitabine plus cisplatin (NIFTY): a multicentre, open-label, randomised, phase 2b study. Lancet Oncol 2021; 22: 1560-1572
- 42 Verlingue L, Malka D, Allorant A. et al. Precision medicine for patients with advanced biliary tract cancers: An effective strategy within the prospective MOSCATO-01 trial. Eur J Cancer 2017; 87: 122-130
- 43 Nakamura H, Arai Y, Totoki Y. et al. Genomic spectra of biliary tract cancer. Nat Genet 2015; 47: 1003-1010
- 44 Jusakul A, Cutcutache I, Yong CH. et al. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer Discov 2017; 7: 1116-1135
- 45 Lowery MA, Ptashkin R, Jordan E. et al. Comprehensive Molecular Profiling of Intrahepatic and Extrahepatic Cholangiocarcinomas: Potential Targets for Intervention. Clin Cancer Res 2018; 24: 4154-4161
- 46 Abou-Alfa GK, Sahai V, Hollebecque A. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol 2020; 21: 671-684
- 47 Makawita S, Abou-Alfa GK, Roychowdhury S. et al. Infigratinib in patients with advanced cholangiocarcinoma with FGFR2 gene fusions/translocations: the PROOF 301 trial. Future Oncol 2020; 16: 2375-2384
- 48 Bekaii-Saab TS, Valle JW, Van Cutsem E. et al. FIGHT-302: first-line pemigatinib vs gemcitabine plus cisplatin for advanced cholangiocarcinoma with FGFR2 rearrangements. Future Oncol 2020; 16: 2385-2399
- 49 Borad MJ, Bridgewater JA, Morizane C. et al. A phase III study of futibatinib (TAS-120) versus gemcitabine-cisplatin (gem-cis) chemotherapy as first-line (1L) treatment for patients (pts) with advanced (adv) cholangiocarcinoma (CCA) harboring fibroblast growth factor receptor 2 (FGFR2) gene rearrangements (FOENIX-CCA3). J Clin Oncol 2020; 38: TPS600
- 50 Abou-Alfa GK, Macarulla T, Javle MM. et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 2020; 21: 796-807
- 51 Subbiah V, Lassen U, Elez E. et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol 2020; 21: 1234-1243
- 52 Galdy S, Lamarca A, McNamara MG. et al. HER2/HER3 pathway in biliary tract malignancies; systematic review and meta-analysis: a potential therapeutic target?. Cancer Metastasis Rev 2017; 36: 141-157
- 53 Javle M, Borad MJ, Azad NS. et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2021; 22: 1290-1300
- 54 Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 2018; 15: 731-747
- 55 Drilon A, Laetsch TW, Kummar S. et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med 2018; 378: 731-739
- 56 Piha-Paul SA, Oh DY, Ueno M. et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies. Int J Cancer 2020; 147: 2190-2198
- 57 Marabelle A, Le DT, Ascierto PA. et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J Clin Oncol 2020; 38: 1-10
- 58 Kim RD, Chung V, Alese OB. et al. A Phase 2 Multi-institutional Study of Nivolumab for Patients With Advanced Refractory Biliary Tract Cancer. JAMA Oncol 2020; 6: 888-894
- 59 Oh D-Y, Lee K-H, Lee D-W. et al. Phase II study assessing tolerability, efficacy, and biomarkers for durvalumab (D) ± tremelimumab (T) and gemcitabine/cisplatin (GemCis) in chemo-naïve advanced biliary tract cancer (aBTC). J Clin Oncol 2020; 38: 4520-4520
- 60 Oh D-Y, He AR, Qin S. et al. A phase 3 randomized, double-blind, placebo-controlled study of durvalumab in combination with gemcitabine plus cisplatin (GemCis) in patients (pts) with advanced biliary tract cancer (BTC): TOPAZ-1. J Clin Oncol 2022; 40: 378
- 61 Villanueva L, Lwin Z, Chung HC. et al. Lenvatinib plus pembrolizumab for patients with previously treated biliary tract cancers in the multicohort phase II LEAP-005 study. J Clin Oncol 2021; 39: 321-321
- 62 Zhou J, Fan J, Shi G. et al. 56P Anti-PD1 antibody toripalimab, lenvatinib and gemox chemotherapy as first-line treatment of advanced and unresectable intrahepatic cholangiocarcinoma: A phase II clinical trial. Ann Oncol 2020; 31: S262-S263