Zentralbl Chir 2022; 147(04): 361-368
DOI: 10.1055/a-1844-0549
Übersicht

Leberchirurgie 4.0 - OP-Planung, Volumetrie, Navigation und Virtuelle Realität

Liver Surgery 4.0 - Planning, Volumetry, Navigation and Virtual Reality
Tobias Huber
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin Mainz, Mainz, Deutschland
,
Florentine Huettl
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin Mainz, Mainz, Deutschland
,
Laura Isabel Hanke
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin Mainz, Mainz, Deutschland
,
Lukas Vradelis
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin Mainz, Mainz, Deutschland
,
Stefan Heinrich
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin Mainz, Mainz, Deutschland
,
Christian Hansen
2   Fakultät für Informatik, Otto von Guericke Universität Magdeburg, Magdeburg, Deutschland (Ringgold ID: RIN9376)
,
Christian Boedecker
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin Mainz, Mainz, Deutschland
,
Hauke Lang
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin Mainz, Mainz, Deutschland
› Institutsangaben
Gefördert durch: Bundesministerium für Bildung und Forschung 16SV8057

Zusammenfassung

Durch die Optimierung der konservativen Behandlung, die Verbesserung der bildgebenden Verfahren und die Weiterentwicklung der Operationstechniken haben sich das operative Spektrum sowie der Maßstab für die Resektabilität in Bezug auf die Leberchirurgie in den letzten Jahrzehnten deutlich verändert.

Dank zahlreicher technischer Entwicklungen, insbesondere der 3-dimensionalen Segmentierung, kann heutzutage die präoperative Planung und die Orientierung während der Operation selbst, vor allem bei komplexen Eingriffen, unter Berücksichtigung der patientenspezifischen Anatomie erleichtert werden.

Neue Technologien wie 3-D-Druck, virtuelle und augmentierte Realität bieten zusätzliche Darstellungsmöglichkeiten für die individuelle Anatomie. Verschiedene intraoperative Navigationsmöglichkeiten sollen die präoperative Planung im Operationssaal verfügbar machen, um so die Patientensicherheit zu erhöhen.

Dieser Übersichtsartikel soll einen Überblick über den gegenwärtigen Stand der verfügbaren Technologien sowie einen Ausblick in den Operationssaal der Zukunft geben.

Abstract

Due to the optimisation of conservative treatment, the improvement of imaging methods and the continuous development of surgical techniques, the borders of resectability in liver surgery have changed significantly in recent decades.

Thanks to numerous technical developments, in particular three-dimensional segmentation, preoperative planning and orientation during the operation itself, can now be facilitated, especially in complex procedures.

New technologies such as 3D printing as well as virtual and augmented reality offer additional display options for the patients’ individual anatomy. Various intraoperative navigation options are intended to make preoperative planning available in the operating room in order to increase patient safety.

This review article is intended to provide an overview of the current state of available technologies and an outlook into the operating theatre of the future.



Publikationsverlauf

Eingereicht: 17. März 2022

Angenommen: 03. Mai 2022

Artikel online veröffentlicht:
06. Juli 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Adam R, de Gramont A, Figueras J. EGOSLIM (Expert Group on OncoSurgery management of LIver Metastases) group. et al. Managing synchronous liver metastases from colorectal cancer: a multidisciplinary international consensus. Cancer Treat Rev 2015; 41: 729-741
  • 2 Ignatavicius P, Oberkofler CE, Chapman WC. et al. Choices of Therapeutic Strategies for Colorectal Liver Metastases Among Expert Liver Surgeons: A Throw of the Dice?. Ann Surg 2020; 272: 715-722
  • 3 Clavien PA, Petrowsky H, DeOliveira ML. et al. Strategies for safer liver surgery and partial liver transplantation. N Engl J Med 2007; 356: 1545-1559
  • 4 Van Cutsem E, Cervantes A, Adam R. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016; 27: 1386-1422
  • 5 Lim MC, Tan CH, Cai J. et al. CT volumetry of the liver: where does it stand in clinical practice?. Clin Radiol 2014; 69: 887-895
  • 6 Anwar AS, Srikala J, Papalkar AS. et al. Study of anatomical variations of hepatic vasculature using multidetector computed tomography angiography. Surg Radiol Anat 2020; 42: 1449-1457
  • 7 Takeishi K, Shirabe K, Yoshida Y. et al. Correlation between portal vein anatomy and bile duct variation in 407 living liver donors. Am J Transplant 2015; 15: 155-160
  • 8 Suzuki K, Epstein ML, Kohlbrenner R. et al. Quantitative radiology: automated CT liver volumetry compared with interactive volumetry and manual volumetry. AJR Am J Roentgenol 2011; 197: W706-W712
  • 9 Gotra A, Sivakumaran L, Chartrand G. et al. Liver segmentation: indications, techniques and future directions. Insights Imaging 2017; 8: 377-392
  • 10 Yeo CT, MacDonald A, Ungi T. et al. Utility of 3D Reconstruction of 2D Liver Computed Tomography/Magnetic Resonance Images as a Surgical Planning Tool for Residents in Liver Resection Surgery. J Surg Educ 2018; 75: 792-797
  • 11 Lang H, Radtke A, Liu C. et al. Extended left hepatectomy--modified operation planning based on three-dimensional visualization of liver anatomy. Langenbecks Arch Surg 2004; 389: 306-310
  • 12 Lopez-Lopez V, Robles-Campos R, García-Calderon D. et al. Applicability of 3D-printed models in hepatobiliary surgey: results from “LIV3DPRINT” multicenter study. HPB (Oxford) 2021; 23: 675-684
  • 13 Radtke A, Sotiropoulos GC, Sgourakis G. et al. “Anatomical” versus “territorial” belonging of the middle hepatic vein: virtual imaging and clinical repercussions. J Surg Res 2011; 166: 146-155
  • 14 Fang CH, Tao HS, Yang J. et al. Impact of three-dimensional reconstruction technique in the operation planning of centrally located hepatocellular carcinoma. J Am Coll Surg 2015; 220: 28-37
  • 15 Lang H, Radtke A, Hindennach M. et al. Impact of virtual tumor resection and computer-assisted risk analysis on operation planning and intraoperative strategy in major hepatic resection. Arch Surg 2005; 140: 629-638
  • 16 Paschold M, Huettl F, Kneist W. et al. Local, semi-automatic, three-dimensional liver reconstruction or external provider? An analysis of performance and time expense. Langenbecks Arch Surg 2020; 405: 173-179
  • 17 Wei XB, Xu J, Li N. et al. The role of three-dimensional imaging in optimizing diagnosis, classification and surgical treatment of hepatocellular carcinoma with portal vein tumor thrombus. HPB (Oxford) 2016; 18: 287-295
  • 18 Fang C, An J, Bruno A. et al. Consensus recommendations of three-dimensional visualization for diagnosis and management of liver diseases. Hepatol Int 2020; 14: 437-453
  • 19 Oshiro Y, Ohkohchi N. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing. Tissue Eng Part A 2017; 23: 474-480
  • 20 Kingham TP, Scherer MA, Neese BW. et al. Image-guided liver surgery: intraoperative projection of computed tomography images utilizing tracked ultrasound. HPB (Oxford) 2012; 14: 594-603
  • 21 Boedecker C, Huettl F, Saalfeld P. et al. Using virtual 3D-models in surgical planning: workflow of an immersive virtual reality application in liver surgery. Langenbecks Arch Surg 2021; 406: 911-915
  • 22 Yang T, Lin S, Xie Q. et al. Impact of 3D printing technology on the comprehension of surgical liver anatomy. Surg Endosc 2019; 33: 411-417
  • 23 Huettl F, Saalfeld P, Hansen C. et al. Virtual reality and 3D printing improve preoperative visualization of 3D liver reconstructions-results from a preclinical comparison of presentation modalities and user’s preference. Ann Transl Med 2021; 9: 1074
  • 24 Pelanis E, Kumar RP, Aghayan DL. et al. Use of mixed reality for improved spatial understanding of liver anatomy. Minim Invasive Ther Allied Technol 2020; 29: 154-160
  • 25 Boedecker C, Borchardt T, Huettl F. et al. In Virtual Reality durch die Pandemie: Digitale Lehre mit modernster Technologie in der Leberchirurgie. Z Gastroenterol 2021; 59: A166
  • 26 Schott D, Saalfeld P, Schmidt G. et al. A VR/AR Environment for Multi-User Liver Anatomy Education. In: 2021 IEEE Virtual Reality and 3D User Interfaces (VR). Lisbon: IEEE; 2021: 296-305
  • 27 Chheang V, Saalfeld P, Joeres F. et al. A collaborative virtual reality environment for liver surgery planning. Comput Graph 2021; 99: 234-246
  • 28 Huber T, Huettl F, Tripke V. et al. Experiences With Three-dimensional Printing in Complex Liver Surgery. Ann Surg 2021; 273: e26-e27
  • 29 Miyata A, Arita J, Kawaguchi Y. et al. Simulation and navigation liver surgery: an update after 2,000 virtual hepatectomies. Glob Health Med 2020; 2: 298-305
  • 30 Mise Y, Tani K, Aoki T. et al. Virtual liver resection: computer-assisted operation planning using a three-dimensional liver representation. J Hepatobiliary Pancreat Sci 2013; 20: 157-164
  • 31 Kumar RP, Pelanis E, Bugge R. et al. Use of mixed reality for surgery planning: Assessment and development workflow. J Biomed Inform 2020; 112S: 100077
  • 32 Kenngott HG, Pfeiffer M, Preukschas AA. et al. IMHOTEP: cross-professional evaluation of a three-dimensional virtual reality system for interactive surgical operation planning, tumor board discussion and immersive training for complex liver surgery in a head-mounted display. Surg Endosc 2022; 36: 126-134
  • 33 Tinguely P, Fusaglia M, Freedman J. et al. Laparoscopic image-based navigation for microwave ablation of liver tumors–A multi-center study. Surg Endosc 2017; 31: 4315-4324
  • 34 Simpson AL, Kingham TP. Current Evidence in Image-Guided Liver Surgery. J Gastrointest Surg 2016; 20: 1265-1269
  • 35 Quero G, Lapergola A, Soler L. et al. Virtual and Augmented Reality in Oncologic Liver Surgery. Surg Oncol Clin N Am 2019; 28: 31-44
  • 36 Tang R, Ma LF, Rong ZX. et al. Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary surgery: A review of current methods. Hepatobiliary Pancreat Dis Int 2018; 17: 101-112
  • 37 Volonté F, Pugin F, Bucher P. et al. Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. J Hepatobiliary Pancreat Sci 2011; 18: 506-509
  • 38 Saito Y, Sugimoto M, Imura S. et al. Intraoperative 3D Hologram Support With Mixed Reality Techniques in Liver Surgery. Ann Surg 2020; 271: e4-e7
  • 39 Sauer IM, Queisner M, Tang P. et al. Mixed Reality in Visceral Surgery: Development of a Suitable Workflow and Evaluation of Intraoperative Use-cases. Ann Surg 2017; 266: 706-712
  • 40 Golse N, Petit A, Lewin M. et al. Augmented Reality during Open Liver Surgery Using a Markerless Non-rigid Registration System. J Gastrointest Surg 2021; 25: 662-671
  • 41 Peterhans M, vom Berg A, Dagon B. et al. A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robot 2011; 7: 7-16
  • 42 Ivashchenko OV, Kuhlmann KFD, van Veen R. et al. CBCT-based navigation system for open liver surgery: Accurate guidance toward mobile and deformable targets with a semi-rigid organ approximation and electromagnetic tracking of the liver. Med Phys 2021; 48: 2145-2159
  • 43 Falkenberg M, Rizell M, Sternby Eilard M. et al. Radiopaque Fiducials Guiding Laparoscopic Resection of Liver Tumors. Surg Laparosc Endosc Percutan Tech 2021; 32: 140-144
  • 44 Pfeiffer M, Riediger C, Weitz J. et al. Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks. Int J Comput Assist Radiol Surg 2019; 14: 1147-1155
  • 45 Zhang F, Zhang S, Sun L. et al. Research on registration and navigation technology of augmented reality for ex-vivo hepatectomy. Int J Comput Assist Radiol Surg 2022; 17: 147-155
  • 46 Oldhafer KJ, Peterhans M, Kantas A. et al. Navigierte Leberchirurgie. Chirurg 2018; 89: 769-776
  • 47 Garancini M, Gianotti L, Delitala A. et al. Intraoperative ultrasound: a review on its role in liver surgery for primitive and metastatic tumors. Minerva Chir 2016; 71: 201-213
  • 48 Miyata A, Arita J, Shirata C. et al. Quantitative Assessment of the Accuracy of Real-Time Virtual Sonography for Liver Surgery. Surg Innov 2020; 27: 60-67
  • 49 Gavriilidis P, Edwin B, Pelanis E. et al. Navigated liver surgery: State of the art and future perspectives. Hepatobiliary Pancreat Dis Int 2022; 21: 226-233
  • 50 Berardi G, Colasanti M, Meniconi RL. et al. The Applications of 3D Imaging and Indocyanine Green Dye Fluorescence in Laparoscopic Liver Surgery. Diagnostics (Basel) 2021; 11: 2169
  • 51 Nishino H, Hatano E, Seo S. et al. Real-time Navigation for Liver Surgery Using Projection Mapping With Indocyanine Green Fluorescence: Development of the Novel Medical Imaging Projection System. Ann Surg 2018; 267: 1134-1140
  • 52 Gockel I, Jansen-Winkeln B, Holfert N. et al. Möglichkeiten und Perspektiven der Hyperspektralbildgebung in der Viszeralchirurgie. Chirurg 2020; 91: 150-159
  • 53 Zhang Y, Yu S, Zhu X. et al. Explainable liver tumor delineation in surgical specimens using hyperspectral imaging and deep learning. Biomed Opt Express 2021; 12: 4510-4529
  • 54 Kong X, Nie L, Zhang H. et al. Do Three-dimensional Visualization and Three-dimensional Printing Improve Hepatic Segment Anatomy Teaching? A Randomized Controlled Study. J Surg Educ 2016; 73: 264-269
  • 55 Laimer G, Schullian P, Bale R. Stereotactic Thermal Ablation of Liver Tumors: 3D Planning, Multiple Needle Approach, and Intraprocedural Image Fusion Are the Key to Success–A Narrative Review. Biology (Basel) 2021; 10: 644
  • 56 Tinguely P, Schwalbe M, Fuss T. et al. Multi-Operational Selective Computer-Assisted Targeting of hepatocellular carcinoma-Evaluation of a novel approach for navigated tumor ablation. PLoS One 2018; 13: e0197914
  • 57 Perrodin S, Lachenmayer A, Maurer M. et al. Percutaneous stereotactic image-guided microwave ablation for malignant liver lesions. Sci Rep 2019; 9: 13836
  • 58 Huber T, Baumgart J, Peterhans M. et al. Computer-assisted 3D-navigated laparoscopic resection of a vanished colorectal liver metastasis after chemotherapy. Z Gastroenterol 2016; 54: 40-43
  • 59 Banz VM, Baechtold M, Weber S. et al. Computer planned, image-guided combined resection and ablation for bilobar colorectal liver metastases. World J Gastroenterol 2014; 20: 14992-14996
  • 60 Schneider C, Allam M, Stoyanov D. et al. Performance of image guided navigation in laparoscopic liver surgery – A systematic review. Surg Oncol 2021; 38: 101637