Klinische Neurophysiologie 2022; 53(03): 148-153
DOI: 10.1055/a-1875-1645
Übersicht

Einfluss von Medikamenten auf das EEG: Eine Übersicht

Influence of Medication on the EEG: A Review
Jan Heckelmann
1   Sektion Epileptologie und Klinik für Neurologie, Uniklinik RWTH Aachen, Aachen
,
Yvonne Weber
1   Sektion Epileptologie und Klinik für Neurologie, Uniklinik RWTH Aachen, Aachen
› Author Affiliations

Zusammenfassung

Eine Vielzahl von Präparaten mit Einfluss auf das zentrale Nervensystem, insbesondere Medikamente, die zur Standard-Therapie auf neurologischen Intensiv- und Überwachungsstationen gehören, haben einen Einfluss auf den elektroenzephalograhischen (EEG) Befund. Diese Effekte reichen von geringen Einflüssen auf Grundrhythmus und EEG-Amplituden bis zur Auslösung von epileptiformer Aktivität und Anfallsmustern. Kenntnisse über die zu erwartenden Veränderungen sind daher relevant, um neben krankheitsassoziierten Auffälligkeiten im Rahmen der Differentialdiagnostik auch medikamentöse Ursachen bedenken zu können und etwaige therapeutische Konsequenzen einzuleiten. In dem vorliegenden Übersichtartikel werden neben Einflüssen von Analgosedierung und antikonvulsiven Medikamenten auch Effekte von Neuroleptika, Antidepressiva, Immunsuppressiva sowie Antibiotika auf das EEG diskutiert.

Abstract

A large number of drugs active at the central nervous system, especially drugs that are part of the standard therapy in neurological intensive care units and monitoring wards, influence the electroencephalography (EEG). These effects range from minor influences on the basic rhythm and amplitudes to epileptiform activity and seizures. Thus, the knowledge of the changes to be expected is relevant in order to be able to also take drug-related causes into account besides disease-associated abnormalities in the course of differential diagnosis and to be able to evaluate therapeutic consequences. In addition to the EEG changes caused by analgesic sedation and anticonvulsants, the present review article also describes the influence of neuroleptic and antidepressant medication, immunosuppressants and antibiotics hereunto.



Publication History

Article published online:
07 September 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Forsgren L, Bucht G, Eriksson S. et al. Incidence and clinical characterization of unprovoked seizures in adults: a prospective population-based study. Epilepsia 1996; 37: 224-229
  • 2 Banerjee PN, Filippi D, Allen Hauser W. The descriptive epidemiology of epilepsy-a review. Epilepsy Res 2009; 85: 31-45
  • 3 Clemens B, Ménes A, Piros P. et al. Quantitative EEG effects of carbamazepine, oxcarbazepine, valproate, lamotrigine, and possible clinical relevance of the findings. Epilepsy Res 2006; 70: 190-199
  • 4 Salinsky MC, Binder LM, Oken BS. et al. Effects of gabapentin and carbamazepine on the EEG and cognition in healthy volunteers. Epilepsia 2002; 43: 482-490
  • 5 Salinsky MC, Spencer DC, Oken BS. et al. Effects of oxcarbazepine and phenytoin on the EEG and cognition in healthy volunteers. Epilepsy Behav 2004; 5: 894-902
  • 6 Howard RS, Trend PS, Townsend HR.. EEG appearances in acute carbamazepine toxicity. Hum Exp Toxicol 1990; 9: 313-315
  • 7 Zöllner JP, Strzelczyk A, Rosenow F. et al. Valproate but not levetiracetam slows the EEG alpha peak frequency – A pharmaco-EEG study. Clin Neurophysiol 2021; 132: 1203-1208
  • 8 Segura-Bruna N, Rodriguez-Campello A, Puente V. et al. Valproate-induced hyperammonemic encephalopathy. Acta Neurol Scand 2006; 114: 1-7
  • 9 Oechsner M, Steen C, Stürenburg HJ. et al. Hyperammonaemic encephalopathy after initiation of valproate therapy in unrecognised ornithine transcarbamylase deficiency. J Neurol Neurosurg Psychiatry 1998; 64: 680-682
  • 10 Veauthier J, Haettig H, Meencke HJ. Impact of levetiracetam add-on therapy on different EEG occipital frequencies in epileptic patients. Seizure 2009; 18: 392-395
  • 11 Salinsky M, Storzbach D, Oken B. et al. Topiramate effects on the EEG and alertness in healthy volunteers: a different profile of antiepileptic drug neurotoxicity. Epilepsy Behav 2007; 10: 463-469
  • 12 Cho JR, Koo DL, Joo EY. et al. Effect of levetiracetam monotherapy on background EEG activity and cognition in drug-naïve epilepsy patients. Clin Neurophysiol 2012; 123: 883-891
  • 13 Gugino LD, Chabot RJ, Prichep LS. et al. Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. British Journal of Anaesthesia 2001; 87: 421-428
  • 14 Hagihira S. Changes in the electroencephalogram during anaesthesia and their physiological basis. Br J Anaesth 2015; 115 Suppl 1 i27-i31
  • 15 Rosenow F, Weber J. Deutsche Gesellschaft für N et al. S2k guidelines: status epilepticus in adulthood : Guidelines of the German Society for Neurology. Nervenarzt 2021; 92: 1002-1030
  • 16 Gotman J, Gloor P, Quesney LF. et al. Correlations between EEG changes induced by diazepam and the localization of epileptic spikes and seizures. Electroencephalogr Clin Neurophysiol 1982; 54: 614-621
  • 17 Wagner J, Wagner ML. Non-benzodiazepines for the treatment of insomnia. Sleep Med Rev 2000; 4: 551-581
  • 18 Bastien CH, LeBlanc M, Carrier J. et al. Sleep EEG power spectra, insomnia, and chronic use of benzodiazepines. Sleep 2003; 26: 313-317
  • 19 Akeju O, Song AH, Hamilos AE. et al. Electroencephalogram signatures of ketamine anesthesia-induced unconsciousness. Clin Neurophysiol 2016; 127: 2414-2422
  • 20 Schwartz MS, Virden S, Scott DF. Effects of ketamine on the electroencephalograph. Anaesthesia 1974; 29: 135-140
  • 21 Ching S, Purdon PL, Vijayan S. et al. A neurophysiological–metabolic model for burst suppression. Proceedings of the National Academy of Sciences 2012; 109: 3095-3100
  • 22 Mutkule DP, Rao SM, Chaudhuri JR. et al. Successful Use of Ketamine for Burst Suppression in Super Refractory Status Epilepticus Following Substance Abuse. Indian J Crit Care Med 2018; 22: 49-50
  • 23 Bischoff P, Scharein E, Schmidt Gunter N. et al. Topography of Clonidine-induced Electroencephalographic Changes Evaluated by Principal Component Analysis. Anesthesiology 2000; 92: 1545-1552
  • 24 Huupponen E, Maksimow A, Lapinlampi P. et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand 2008; 52: 289-294
  • 25 Sebel PS, Bovill JG, Wauquier A. et al. Effects of high-dose fentanyl anesthesia on the electroencephalogram. Anesthesiology 1981; 55: 203-211
  • 26 Kugler J, Lorenzi E, Spatz R. et al. Drug-induced paroxysmal EEG-activities. Pharmakopsychiatr Neuropsychopharmakol 1979; 12: 165-172
  • 27 Avoni P, Riva R, Albani F. Recurrence of absence seizures induced by a low dose of amitriptyline: a case report. Eur J Neurol 1996; 3: 272-274
  • 28 Peck AW, Stern WC, Watkinson C. Incidence of seizures during treatment with tricyclic antidepressant drugs and bupropion. J Clin Psychiatry 1983; 44: 197-201
  • 29 Macaluso M, Zackula R, D’Empaire I. et al. Twenty percent of a representative sample of patients taking bupropion have abnormal, asymptomatic electroencephalographic findings. J Clin Psychopharmacol 2010; 30: 312-317
  • 30 Dike GL. Triphasic waves in serotonin syndrome. Journal of Neurology, Neurosurgery & Psychiatry 1997; 62: 200
  • 31 Varma S, Bishara D, Besag FMC. et al. Clozapine-related EEG changes and seizures: dose and plasma-level relationships. Ther Adv Psychopharmacol 2011; 1: 47-66
  • 32 Freudenreich O, Weiner RD, McEvoy JP. Clozapine-induced electroencephalogram changes as a function of clozapine serum levels. Biol Psychiatry 1997; 42: 132-137
  • 33 McClelland G, Cooper S, Pilgrim A. A comparison of the central nervous system effects of haloperidol, chlorpromazine and sulpiride in normal volunteers. British Journal of Clinical Pharmacology 1990; 30: 795-803
  • 34 Yoshino A, Yoshimasu H. Nonconvulsive status epilepticus complicating neuroleptic malignant syndrome improved by intravenous diazepam. J Clin Psychopharmacol 2000; 20: 389-390
  • 35 Casanova B, de Entrambasaguas M, Perla C. et al. Lithium-induced Creutzfeldt-Jakob syndrome. Clin Neuropharmacol 1996; 19: 356-359
  • 36 Fetzer J, Kader G, Danahy S. Lithium encephalopathy: a clinical, psychiatric, and EEG evaluation. Am J Psychiatry 1981; 138: 1622-1623
  • 37 Wanleenuwat P, Suntharampillai N, Iwanowski P. Antibiotic-induced epileptic seizures: mechanisms of action and clinical considerations. Seizure – European Journal of Epilepsy 2020; 81: 167-174
  • 38 Sutter R, Rüegg S, Tschudin-Sutter S. Seizures as adverse events of antibiotic drugs: A systematic review. Neurology 2015; 85: 1332-1341
  • 39 Grill MF, Maganti RK. Neurotoxic effects associated with antibiotic use: management considerations. British Journal of Clinical Pharmacology 2011; 72: 381-393
  • 40 Johnson E, Carballido Martinez N, Ritzl E. Cefepime-Related Encephalopathy and Associated EEG Activity (P6.369). Neurology 2016; 86 P6. 369
  • 41 Serkova NJ, Christians U, Benet LZ. Biochemical mechanisms of cyclosporine neurotoxicity. Mol Interv 2004; 4: 97-107
  • 42 Natsume J, Sofue A, Yamada A. et al. Electroencephalographic (EEG) findings in posterior reversible encephalopathy associated with immunosuppressants. J Child Neurol 2006; 21: 620-623
  • 43 Fakhoury T, Abou-Khalil B, Blumenkopf B. EEG changes in intrathecal baclofen overdose: a case report and review of the literature. Electroencephalogr Clin Neurophysiol 1998; 107: 339-342
  • 44 Sauneuf B, Totouom HK, Savary B. et al. Clinical and EEG features of acute intrathecal baclofen overdose. Clin Neurol Neurosurg 2012; 114: 84-86