Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(21): 4802-4809
DOI: 10.1055/a-1878-8272
DOI: 10.1055/a-1878-8272
paper
Synthesis of para-Quinone Methides via Oxidative Ring-Opening of Spiro-cyclopropanyl-cyclohexadienones
This research was supported by the Key Scientific Research Project of Colleges and Universities in Henan Province (19A150049).
Abstract
An efficient and simple IBX-promoted oxidative ring-opening of spiro-cyclopropanyl-cyclohexadienones was developed. Disubstituted para-quinone methides were obtained with good to excellent yields and high regioselectivity (33 examples, 45–90% yields). This convenient transformation provides a new method to construct significant para-quinone methides and features high efficiency, broad substrate scope, and good functional group compatibility
Key words
spiro-cyclopropanyl-cyclohexadienones - para-quinone methides - IBX - oxidation - ring openingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1878-8272.
- Supporting Information
Publication History
Received: 15 April 2022
Accepted after revision: 20 June 2022
Accepted Manuscript online:
20 June 2022
Article published online:
10 August 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Takao KI, Sasaki T, Kozaki T, Yanagisawa Y, Tadano KI, Kawashima A, Shinonaga H. Org. Lett. 2001; 3: 4291
- 1b Jansen R, Gerth K, Steinmetz H, Reinecke S, Kessler W, Kirschning A, Müller R. Chem. Eur. J. 2011; 17: 7739
- 1c Yuan Y, Men H, Lee C. J. Am. Chem. Soc. 2004; 126: 14720
- 1d Smith AB, Mesaros EF, Meyer EA. J. Am. Chem. Soc. 2006; 128: 5292
- 1e Kupchan SM, Karim A, Marcks C. J. Am. Chem. Soc. 1968; 90: 5923
- 2a Larsen AA. Nature 1969; 224: 25
- 2b Hamels D, Dansette PM, Hillard EA, Top S, Vessières A, Herson P, Jaouen G, Mansuy D. Angew. Chem. Int. Ed. 2009; 48: 9124
- 2c Messiano GB, da Silva T, Nascimento IR, Lopes LM. Phytochemistry 2009; 70: 590
- 2d Zhou Q, Qu Y, Mangrum JB, Wang X. Chem. Res. Toxicol. 2011; 24: 402
- 2e Toteva MM, Richard JP. Adv. Phys. Org. Chem. 2011; 45: 39
- 2f Caruana L, Fochi M, Bernardi L. Molecules 2015; 20: 11733
- 2g Parra A, Tortosa M. ChemCatChem 2015; 7: 1524
- 2h Chauhan P, Kaya U, Enders D. Adv. Synth. Catal. 2017; 359: 888
- 3a Wang J.-Y, Hao W.-J, Tu S.-J, Jiang B. Org. Chem. Front. 2020; 7: 1743
- 3b Chu W.-D, Zhang L.-F, Bao X, Zhao X.-H, Zeng C, Du J.-Y, Zhang G.-B, Wang F.-X, Ma X.-Y, Fan C.-A. Angew. Chem. Int. Ed. 2013; 52: 9229
- 3c Caruana L, Kniep F, Johansen TK, Poulsen PH, Jørgensen KA. J. Am. Chem. Soc. 2014; 136: 15929
- 3d Lou Y, Cao P, Jia T, Zhang Y, Wang M, Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
- 3e Deng Y.-H, Zhang X.-Z, Yu K.-Y, Yan X, Du J.-Y, Huang H, Fan C.-A. Chem. Commun. 2016; 52: 4183
- 3f He F.-S, Jin J.-H, Yang Z.-T, Yu X, Fossey JS, Deng W.-P. ACS Catal. 2016; 6: 652
- 3g Zhang X.-Z, Deng Y.-H, Yan X, Yu K.-Y, Wang F.-X, Ma X.-Y, Fan C.-A. J. Org. Chem. 2016; 81: 5655
- 3h Li X, Xu X, Wei W, Lin A, Yao H. Org. Lett. 2016; 18: 428
- 3i Yang C, Gao S, Yao H.-Q, Lin AJ. Org. Chem. 2016; 81: 11956
- 3j Gao S, Xu X.-Y, Yuan Z.-B, Zhou H.-P, Yao H.-Q, Lin A.-J. Eur. J. Org. Chem. 2016; 2016: 3006
- 4a Zhao K, Zhi Y, Shu T, Valkonen A, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 12104
- 4b Mei G.-J, Xu S.-L, Zheng W.-Q, Bian C.-Y, Shi F. J. Org. Chem. 2018; 83: 1414
- 4c Xiong Y.-J, Shi S.-Q, Hao W.-J, Tu S.-J, Jiang B. Org. Chem. Front. 2018; 5: 3483
- 4d Su Y, Zhao Y, Chang B, Zhao X, Zhang R, Liu X, Huang D, Wang K.-H, Huo C, Hu Y. J. Org. Chem. 2019; 84: 6719
- 5a Koutek B, Pavlickova L, Soucek M. Synth. Commun. 1976; 6: 305
- 5b Richter D, Hampel N, Singer T, Ofial AR, Mayr H. Eur. J. Org. Chem. 2009; 2009: 3203
- 6 Chen M, Sun J.-W. Angew. Chem. Int. Ed. 2017; 56: 11966
- 7a Wang Z.-H, Zhu Y.-S, Pan X.-G, Wang G, Liu L. Angew. Chem. Int. Ed. 2020; 59: 3053
- 7b Pan X.-G, Wang Z.-H, Kan L.-L, Mao Y, Zhu Y.-S, Liu L. Chem. Sci. 2020; 11: 2414
- 7c Qi Y, Zhang F, Wang L, Feng A.-L, Zhu R.-X, Sun S.-T, Li W, Liu L. Org. Biomol. Chem. 2020; 18: 3522
- 8a Paquette LA. Chem. Rev. 1986; 86: 733
- 8b Wong HN. C, Hon M.-Y, Tse CW, Yip Y.-C, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
- 8c Kulinkovich OG. Russ. Chem. Rev. 1993; 62: 839
- 8d Khoury PR, Goddard JD, Tam W. Tetrahedron 2004; 60: 8103
- 8e Chen DY. K, Pouwer RH, Richard JA. Chem. Soc. Rev. 2012; 41: 4631
- 8f Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
- 8g Xuan J, He X.-K, Xiao W.-J. Chem. Soc. Rev. 2020; 49: 2546
- 9a Chen J.-C, Gao S, Chen M. Org. Lett. 2019; 21: 8800
- 9b Wender PA, Gamber GG, Hubbard RD, Pham SM, Zhang L. J. Am. Chem. Soc. 2005; 127: 2836
- 9c Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
- 9d Jiao L, Yu Z.-X. J. Org. Chem. 2013; 78: 6842
- 9e Cheng Q, Xie J.-H, Weng Y.-C, You S.-L. Angew. Chem. Int. Ed. 2019; 58: 5739
- 9f Trost BM, Morris PJ, Sprague SJ. J. Am. Chem. Soc. 2012; 134: 17823
- 9g Mei L, Wei Y, Xu Q, Shi M. Organometallics 2012; 31: 7591
- 9h Ding W.-P, Zhang G.-P, Jiang Y.-J, Du J, Liu X.-Y, Chen D, Ding C.-H, Deng Q.-H, Hou X.-L. Org. Lett. 2019; 21: 6805
- 9i Xie M.-S, Wang Y, Li J.-P, Du C, Zhang Y.-Y, Hao E.-J, Zhang Y.-M, Qu G.-R, Guo H.-M. Chem. Commun. 2015; 51: 12451
- 10a Reissig HU, Zimmer R. Chem. Rev. 2003; 103: 1151
- 10b Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 10c Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
- 10d Xia Y, Liu X.-H, Feng X.-M. Angew. Chem. Int. Ed. 2021; 60: 9192
-
11a
Jia K,
Zhang F,
Huang H,
Chen Y.
J. Am. Chem. Soc. 2016; 138: 1514
- 11b Ji M.-S, Wu Z, Zhu C. Chem. Commun. 2019; 55: 2368
- 11c Woz’niak Ł, Magagnano G, Melchiorre P. Angew. Chem. Int. Ed. 2018; 57: 1068
- 11d Maity S, Zhu M, Shinabery RS, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 222
- 11e Staveness D, Sodano TM, Li K.-J, Burnham EA, Jackson KD, Stephenson CR. J. Chem 2019; 5, 215
- 11f Yoon TP. ACS Catal. 2013; 3: 895
- 11g Ge L, Wang D.-X, Xing R, Ma D, Walsh PJ, Feng C. Nat. Commun. 2019; 10: 4367
- 11h Wang C, Ren X, Xie H, Lu Z. Chem. Eur. J. 2015; 21: 9676
- 11i Huang X.-Q, Lin J.-H, Shen T, Harms K, Marchini M, Ceroni P, Meggers E. Angew. Chem. Int. Ed. 2018; 57: 5454
- 12a Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Angew. Chem. Int. Ed. 2021; 60: 15928
- 12b Kolb S, Ahlburg NL, Werz DB. Org. Lett. 2021; 23: 5549
- 12c Peng P, Yan X.-X, Zhang K, Liu Z, Zeng L, Chen Y.-X, Zhang H, Lei A.-W. Nat. Commun. 2021; 12: 3075
- 13 Vereshchagin AN, Elinson MN, Dorofeeva EO, Sokolova OO, Bushmarinov IS, Egorov MP. RSC Adv. 2015; 5: 94986
- 14a Hartmann C, Meyer V. Ber. Dtsch. Chem. Ges. 1893; 26: 1354
- 14b Nicolaou KC, Mathison CJ. N, Montagnon T. Angew. Chem. Int. Ed. 2003; 42: 4077
- 14c Duschek A, Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524
- 14d Wu J.-L, Deng X.-Z, Yoshikai N. Chem. Eur. J. 2019; 25: 7839
- 14e Chai J.-K, Ding W, Wu J.-L, Yoshikai N. Chem. Asian J. 2020; 15: 2166
- 14f Ding W, Chai J.-K, Wang C, Wu J.-L, Yoshikai N. J. Am. Chem. Soc. 2020; 142: 8619
- 14g Chai J.-K, Ding W, Wang C, Ito S, Wu J.-L, Yoshikai N. Chem. Sci. 2021; 12: 15128
- 14h Banik SM, Mennie KM, Jacobsen EN. J. Am. Chem. Soc. 2017; 139: 9152
- 14i Ilchenko NO, Hedberg M, Szabó KJ. Chem. Sci. 2017; 8: 1056
For selected reviews on cyclopropanes, see: