Klin Monbl Augenheilkd 2022; 239(08): 971-981
DOI: 10.1055/a-1896-0881
Übersicht

Biometry and Intraocular Lens Power Calculation in Eyes with Prior Laser Vision Correction (LVC) – A Review

Biometrie und Intraokularlinsenberechnung bei Augen mit vorheriger refraktiver Laserkorrektur – eine Übersichtsarbeit
1   IROC, Institut für Refraktive und Ophthalmo-Chirurgie, Zürich, Switzerland
2   Abteilung für Augenheilkunde und Optometrie, Johannes Kepler Universität Linz, Linz, Austria
3   Institut für Experimentelle Ophthalmologie, Universität des Saarlandes, Homburg/Saar, Germany
,
Michael Heath
4   College of Medicine, University of Oklahoma, Norman, Oklahoma, United States
,
5   University of Oklahoma, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
,
Theo Seiler
1   IROC, Institut für Refraktive und Ophthalmo-Chirurgie, Zürich, Switzerland
6   Universitätsklinik für Augenheilkunde, Inselspital, Bern, Switzerland
7   Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
,
David L. Cooke
8   Great Lakes Eye Care, Saint Joseoph, United States
9   Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan, United States
,
Achim Langenbucher
3   Institut für Experimentelle Ophthalmologie, Universität des Saarlandes, Homburg/Saar, Germany
,
Peter Hoffmann
10   Augen- und Laserklinik Castrop-Rauxel, Castrop-Rauxel, Germany
,
Thomas Kohnen
11   Klinik für Augenheilkunde, Goethe-Universität, Frankfurt, Germany
› Author Affiliations

Abstract

Background An intraocular lens (IOL) calculation in eyes that have undergone laser vision correction (LVC) poses a significant clinical issue in regards to both patient expectation and accuracy. This review aims to describe the pitfalls of IOL power calculation after LVC and give an overview of the current methods of IOL power calculation after LVC.

Review Problems after LVC derive from the measurement of anterior corneal radii, central corneal thickness, asphericity, and the predicted effective lens position. A central issue is that most conventional 3rd generation formulas estimate lens position amongst other parameters on keratometry, which is altered in post-LVC eyes.

Conclusion An IOL power calculation results in eyes with prior LVC that are notably impaired in eyes without prior surgery. Effective corneal power including anterior corneal curvature, posterior corneal curvature, CCT (central corneal thickness), and asphericity is essential. Total keratometry in combination with the Barrett True-K, EVO (emmetropia verifiying optical formula), or Haigis formula is relatively uncomplicated and seems to provide good results, as does the Barrett True-K formula with anterior K values. The ASCRS ( American Society of Cataract and Refractive Surgery) calculator combines results of various formulae and averages results, which allows a direct comparison between the different methods. Tomography-based raytracing and the Kane and the Castrop formulae need to be evaluated by future studies.

Zusammenfassung

Hintergrund Die Berechnung der Intraokularlinse (IOL) bei Augen, die einer refraktiven Laserkorrektur (LVC) unterzogen wurden, stellt ein bedeutendes klinisches Problem dar, sowohl im Hinblick auf die Erwartungen der Patienten als auch auf die refraktive Treffgenauigkeit. Ziel dieser Übersichtsarbeit ist es, die Fallstricke der IOL-Berechnung nach LVC zu beschreiben und einen Überblick über die aktuellen Methoden der IOL-Berechnung nach LVC zu geben.

Überblick Probleme nach LVC ergeben sich aus der Messung der vorderen Hornhautradien, der zentralen Hornhautdicke (CCT), der Asphärizität und der voraussichtlichen effektiven Linsenposition. Ein zentrales Problem ist, dass die meisten konventionellen Formeln der 3. Generation die effektive Linsenposition neben anderen Parametern anhand der Keratometrie abschätzen, die bei Augen nach LVC verändert ist.

Schlussfolgerung Die Ergebnisse der IOL-Brechkraftberechnung bei Augen mit vorheriger LVC sind deutlich schlechter als bei Augen ohne vorherige Operation. Die effektive Hornhautbrechkraft einschließlich der vorderen Hornhautkrümmung, der hinteren Hornhautkrümmung, der CCT und der Asphärizität ist von wesentlicher Bedeutung. Total Keratometry in Kombination mit der Barrett-True-K-, EVO- oder Haigis-Formel ist relativ unkompliziert und scheint gute Ergebnisse zu liefern. Gleiches gilt für die Barrett-True-K-Formel mit anterioren K-Werten. Der ASCRS-Rechner kombiniert die Ergebnisse der verschiedenen Formeln und bildet einen Mittelwert, was einen direkten Vergleich zwischen den verschiedenen Methoden ermöglicht. Das tomografiebasierte Raytracing, die Kane- und die Castrop-Formel müssen in zukünftigen Studien evaluiert werden.



Publication History

Received: 27 June 2022

Accepted: 30 June 2022

Article published online:
16 August 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Holden BA, Fricke TR, Wilson DA. et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016; 123: 1036-1042
  • 2 Savini G, Hoffer KJ. Intraocular lens power calculation in eyes with previous corneal refractive surgery. Eye Vis (Lond) 2018; 5: 18
  • 3 Wang L, Koch DD. Intraocular Lens Power Calculations in Eyes with Previous Corneal Refractive Surgery: Review and Expert Opinion. Ophthalmology 2021; 128: e121-e131
  • 4 Wang L, Tang M, Huang D. et al. Comparison of Newer Intraocular Lens Power Calculation Methods for Eyes after Corneal Refractive Surgery. Ophthalmology 2015; 122: 2443-2449
  • 5 Norrby S. Sources of error in intraocular lens power calculation. J Cataract Refract Surg 2008; 34: 368-376
  • 6 Liu Y, Wang Y, Wang Z. et al. Effects of error in radius of curvature on the corneal power measurement before and after laser refractive surgery for myopia. Ophthalmic Physiol Opt 2012; 32: 355-361
  • 7 Savini G, Carbonelli M, Barboni P. et al. Clinical relevance of radius of curvature error in corneal power measurements after excimer laser surgery. J Cataract Refract Surg 2010; 36: 82-86
  • 8 Fyodorov SN, Galin MA, Linksz A. Calculation of the optical power of intraocular lenses. Invest Ophthalmol 1975; 14: 625-628
  • 9 Gernet H, Ostholt H, Werner H. Die präoperative Berechnung intraocularer Binkhorst-Linsen. 122 Versammlung des Vereins Rheinisch-Westfälischer Augenärzte 1970; 54-55
  • 10 Haigis W, Lege B, Miller N. et al. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 2000; 238: 765-773
  • 11 Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg 1993; 19: 700-712
  • 12 Zuberbuhler B, Morrell AJ. Errata in printed Hoffer Q formula. J Cataract Refract Surg 2007; 33: 2 author reply 2–3
  • 13 Holladay JT, Musgrove KH, Prager TC. et al. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg 1988; 14: 17-24
  • 14 Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg 1990; 16: 333-340
  • 15 Aramberri J. Intraocular lens power calculation after corneal refractive surgery: double-K method. J Cataract Refract Surg 2003; 29: 2063-2068
  • 16 Langenbucher A, Schwemm M, Eppig T. et al. Optimal Dataset Sizes for Constant Optimization in Published Theoretical Optical Formulae. Curr Eye Res 2021; 46: 1589-1596
  • 17 Langenbucher A, Szentmáry N, Cayless A. et al. IOL formula constants – strategies for optimization and defining standards for presenting data. Ophthalmic Res 2021; 64: 1055-1067
  • 18 Langenbucher A, Szentmáry N, Cayless A. et al. Strategies for formula constant optimisation for intraocular lens power calculation. PLoS One 2022; 17: e0267352
  • 19 Wang L, Spektor T, de Souza RG. et al. Evaluation of total keratometry and its accuracy for intraocular lens power calculation in eyes after corneal refractive surgery. J Cataract Refract Surg 2019; 45: 1416-1421
  • 20 Lupardi E, Taroni L, Hoffer KJ. et al. Comparison of Corneal Power Calculation by Standard Keratometry and Total Keratometry in Eyes With Previous Myopic FS-LASIK. J Refract Surg 2021; 37: 848-852
  • 21 Yeo TK, Heng WJ, Pek D. et al. Accuracy of intraocular lens formulas using total keratometry in eyes with previous myopic laser refractive surgery. Eye (Lond) 2021; 35: 1705-1711
  • 22 Lawless M, Jiang JY, Hodge C. et al. Total keratometry in intraocular lens power calculations in eyes with previous laser refractive surgery. Clin Experiment Ophthalmol 2020; 48: 749-756
  • 23 Wendelstein J, Hoffmann P, Hirnschall N. et al. Project hyperopic power prediction: accuracy of 13 different concepts for intraocular lens calculation in short eyes. Br J Ophthalmol 2021; 106: 795-801
  • 24 Kane JX, Melles RB. Intraocular lens formula comparison in axial hyperopia with a high-power intraocular lens of 30 or more diopters. J Cataract Refract Surg 2020; 46: 1236-1239
  • 25 Connell BJ, Kane JX. Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ Open Ophthalmol 2019; 4: e000251
  • 26 Langenbucher A, Szentmáry N, Cayless A. et al. Considerations on the Castrop formula for calculation of intraocular lens power. PLoS One 2021; 16: e0252102
  • 27 Langenbucher A, Szentmáry N, Cayless A. et al. The Castrop formula for calculation of toric intraocular lenses. Graefes Arch Clin Exp Ophthalmol 2021; 259: 3321-3331
  • 28 Olsen T, Hoffmann P. C constant: new concept for ray tracing-assisted intraocular lens power calculation. J Cataract Refract Surg 2014; 40: 764-773
  • 29 Langenbucher A, Szentmáry N, Weisensee J. et al. Prediction model for best focus, power, and spherical aberration of the cornea: Raytracing on a large dataset of OCT data. PLoS One 2021; 16: e0247048
  • 30 Gjerdrum B, Gundersen KG, Lundmark PO. et al. Refractive Precision of Ray Tracing IOL Calculations Based on OCT Data versus Traditional IOL Calculation Formulas Based on Reflectometry in Patients with a History of Laser Vision Correction for Myopia. Clin Ophthalmol 2021; 15: 845-857
  • 31 Darcy K, Gunn D, Tavassoli S. et al. Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service. J Cataract Refract Surg 2020; 46: 2-7
  • 32 Saiki M, Negishi K, Kato N. et al. Ray tracing software for intraocular lens power calculation after corneal excimer laser surgery. Jpn J Ophthalmol 2014; 58: 276-281
  • 33 Canovas C, van der Mooren M, Rosén R. et al. Effect of the equivalent refractive index on intraocular lens power prediction with ray tracing after myopic laser in situ keratomileusis. J Cataract Refract Surg 2015; 41: 1030-1037
  • 34 Rabsilber TM, Reuland AJ, Holzer MP. et al. Intraocular lens power calculation using ray tracing following excimer laser surgery. Eye (Lond) 2007; 21: 697-701
  • 35 Menon PR, Shekhar M, Sankarananthan R. et al. Comparative analysis of predictability and accuracy of American Society of Cataract and Refractive Surgery online calculator with Haigis-L formula in post-myopic laser-assisted in-situ keratomileusis refractive surgery eyes. Indian J Ophthalmol 2020; 68: 2985-2989
  • 36 Vrijman V, Abulafia A, van der Linden JW. et al. ASCRS calculator formula accuracy in multifocal intraocular lens implantation in hyperopic corneal refractive laser surgery eyes. J Cataract Refract Surg 2019; 45: 582-586
  • 37 Vrijman V, Abulafia A, van der Linden JW. et al. Evaluation of Different IOL Calculation Formulas of the ASCRS Calculator in Eyes After Corneal Refractive Laser Surgery for Myopia With Multifocal IOL Implantation. J Refract Surg 2019; 35: 54-59
  • 38 Lwowski C, van Keer K, Adas M. et al. Ray-tracing Calculation Using Scheimpflug Tomography of Diffractive Extended Depth of Focus IOLs Following Myopic LASIK. J Refract Surg 2021; 37: 231-239
  • 39 Lwowski C, Pawlowicz K, Hinzelmann L. et al. Prediction accuracy of IOL calculation formulas using the ASCRS online calculator for a diffractive extended depth-of-focus IOL after myopic laser in situ keratomileusis. J Cataract Refract Surg 2020; 46: 1240-1246
  • 40 Abulafia A, Hill WE, Koch DD. et al. Accuracy of the Barrett True-K formula for intraocular lens power prediction after laser in situ keratomileusis or photorefractive keratectomy for myopia. J Cataract Refract Surg 2016; 42: 363-369
  • 41 Patel P, Ashena Z, Vasavada V. et al. Comparison of intraocular lens calculation methods after myopic laser-assisted in situ keratomileusis and radial keratotomy without prior refractive data. Br J Ophthalmol 2022; 106: 47-53
  • 42 Ferguson TJ, Downes RA, Randleman JB. IOL power calculations after LASIK or PRK: Barrett True-K biometer only calculation strategy yields equivalent outcomes as a multiple formula approach. J Cataract Refract Surg 2022; 48: 784-789
  • 43 Pantanelli SM, Lin CC, Al-Mohtaseb Z. et al. Intraocular Lens Power Calculation in Eyes with Previous Excimer Laser Surgery for Myopia: A Report by the American Academy of Ophthalmology. Ophthalmology 2021; 128: 781-792
  • 44 Masket S, Masket SE. Simple regression formula for intraocular lens power adjustment in eyes requiring cataract surgery after excimer laser photoablation. J Cataract Refract Surg 2006; 32: 430-434
  • 45 Chen X, Yuan F, Wu L. Metaanalysis of intraocular lens power calculation after laser refractive surgery in myopic eyes. J Cataract Refract Surg 2016; 42: 163-170
  • 46 Yang R, Yeh A, George MR. et al. Comparison of intraocular lens power calculation methods after myopic laser refractive surgery without previous refractive surgery data. J Cataract Refract Surg 2013; 39: 1327-1335
  • 47 Potvin R, Hill W. New algorithm for intraocular lens power calculations after myopic laser in situ keratomileusis based on rotating Scheimpflug camera data. J Cataract Refract Surg 2015; 41: 339-347