Subscribe to RSS
DOI: 10.1055/a-1900-3563
Synthesis of Shape-Persistent meta-Arylene-Butadiynylene Macrocycles with a Different Ring Size
The research has been supported by the National Science Centre Poland (Grants UMO-2018/31/N/ST5/00450 and UMO-2018/31/B/ ST5/00899).

Abstract
A series of meta-phenylene-butadiynylene macrocycles was obtained by homocoupling of terminal bis(ethynyl) precursors using Eglinton conditions. Cyclotetramers and cyclopentamers were isolated from the mixture. However, a hexameric analogue was synthesized using a step-by-step approach. Molecular structures of the resulting macrocycles obtained by X-ray single-crystal analysis manifest conformational diversity, indicating significant flexibility of the meta-arylene-butadiynylene macrocycle conjugated skeleton.
Key words
macrocycles - cross-coupling - Eglinton coupling - butadiynes - shape-persistent macrocyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1900-3563.
- Supporting Information
Publication History
Received: 29 April 2022
Accepted after revision: 14 July 2022
Accepted Manuscript online:
14 July 2022
Article published online:
31 August 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Höger S. Angew. Chem. Int. Ed. 2005; 44: 3806
- 2 Diederich F, Stang PJ, Tykwinski RR. Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis . Wiley; New York: 2008
- 3 Zhang W, Moore JS. Angew. Chem. Int. Ed. 2006; 45: 4416
- 4 Höger SJ. Polym. Sci., Ser. A 1999; 37: 2685
- 5 Battersby AR. Nat. Prod. Rep. 2000; 17: 507
- 6 Lahiri S, Thompson JL, Moore JS. J. Am. Chem. Soc. 2000; 122: 11315
- 7 Sugiura H, Takahira Y, Yamaguchi M. J. Org. Chem. 2005; 70: 5698
- 8 Wang Q, Zhong Y, Miller DP, Lu X, Tang Q, Lu Z.-L, Zurek E, Liu R, Gong B. J. Am. Chem. Soc. 2020; 142: 2915
- 9 Rondeau-Gagné S, Néabo JR, Desroches M, Levesque I, Daigle M, Cantin K, Morin J.-F. Chem. Commun. 2013; 49: 9546
- 10 Zhao D, Moore JS. Chem. Commun. 2003; 807
- 11 Tahara K, Gotoda J, Carroll CN, Hirose K, De Feyter S, Tobe Y. Chem. Eur. J. 2015; 21: 6806
- 12 Iritani K, Ikeda M, Yang A, Tahara K, Hirose K, Moore JS, Tobe Y. Langmuir 2017; 33: 12453
- 13 Geng Y, Liu M, Xue J, Xu P, Wang Y, Shu L, Zeng Q, Wang C. Chem. Commun. 2015; 51: 6820
- 14 Venkataraman D, Lee S, Zhang J, Moore JS. Nature 1994; 371: 591
- 15 Yang H, Du Y, Wan S, Trahan GD, Jin Y, Zhang W. Chem. Sci. 2015; 6: 4049
- 16 Zang L, Che Y, Moore JS. Acc. Chem. Res. 2008; 41: 1596
- 17 Lapini A, Fanetti S, Citroni M, Bini R, Gilbert C.-O, Rondeau-Gagné S, Morin J.-F. J. Phys. Chem. C 2018; 122: 20034
- 18 Xu Y, Smith MD, Geer MF, Pellechia PJ, Brown JC, Wibowo AC, Shimizu LS. J. Am. Chem. Soc. 2010; 132: 5334
- 19 Hsu T.-J, Fowler FW, Lauher JW. J. Am. Chem. Soc. 2012; 134: 142
- 20 Rondeau-Gagné S, Néabo JR, Desroches M, Larouche J, Brisson J, Morin J.-F. J. Am. Chem. Soc. 2013; 135: 110
- 21 Maeda K, Hong L, Nishihara T, Nakanishi Y, Miyauchi Y, Kitaura R, Ousaka N, Yashima E, Ito H, Itami K. J. Am. Chem. Soc. 2016; 138: 11001
- 22 Suzuki M, Kotyk JF. K, Khan SI, Rubin Y. J. Am. Chem. Soc. 2016; 138: 5939
- 23 Staab HA, Neunhoeffer K. Synthesis 1974; 424
- 24 Tobe Y, Utsumi N, Nagano A, Sonoda M, Naemura K. Tetrahedron 2001; 57: 8075
- 25 Segawa Y, Miyamoto S, Omachi H, Matsuura S, Šenel P, Sasamori T, Tokitoh N, Itami K. Angew. Chem. Int. Ed. 2011; 50: 3244
- 26 Gross DE, Zang L, Moore JS. Pure Appl. Chem. 2012; 84: 869
- 27 Brake M, Enkelmann V, Bunz UH. F. J. Org. Chem. 1996; 61: 1190
- 28 Schreiber M, Tykwinski RR, Diederich F, Spreiter R, Gubler U, Bosshard C, Poberaj I, Günter P, Boudon C, Gisselbrecht J.-P, Gross M, Jonas U, Ringsdorf H. Adv. Mater. 1997; 9: 339
- 29 Nielsen MB, Schreiber M, Baek YG, Seiler P, Lecomte S, Boudon C, Tykwinski RR, Gisselbrecht J.-P, Gramlich V, Skinner PJ, Bosshard C, Günter P, Gross M, Diederich F. Chem. Eur. J. 2001; 7: 3263
- 30 Shu L, Mayor M. Chem. Commun. 2006; 4134
- 31 Shu L, Müri M, Krupke R, Mayor M. Org. Biomol. Chem. 2009; 7: 1081
- 32 Tobe Y, Utsumi N, Nagano A, Naemura K. Angew. Chem. Int. Ed. 1998; 37: 1285
- 33 Nomoto A, Sonoda M, Yamaguchi Y, Ichikawa T, Hirose K, Tobe Y. J. Org. Chem. 2006; 71: 401
- 34 Tobe Y, Nagai T, Araki S, Ichikawa T, Nomoto A, Sonoda M, Hirose K. Adv. Funct. Mater. 2006; 16: 1549
- 35 Siemsen P, Livingston RC, Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
- 36 Stöckel K, Sondheimer F. Org. Synth. 1974; 54: 1
- 37 CCDC 2166559 [(4-C2)3], 2166560 [(2-C4)4], 2166566 [(2-C4)5], 2157880 [(2-C4)6], 2154467 [(3-C4)5], 2154468 [(3-C4)4] contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 38 Ogawa K, Tanaka S, Shimura K. RSC Adv. 2020; 10: 9657
- 39 Lakowicz JR. Principles of Fluorescence Spectroscopy . Springer; Berlin: 1999
- 40 Darzi ER, Sisto TJ, Jasti R. J. Org. Chem. 2012; 77: 6624
- 41 Cantin K, Lafleur-Lambert A, Dufour P, Morin J.-F. Eur. J. Org. Chem. 2012; 5335
- 42 Wang S.-C, Cheng K.-Y, Fu J.-H, Cheng Y.-C, Chan Y.-T. J. Am. Chem. Soc. 2020; 142: 16661