Osteologie 2022; 31(03): 176-183
DOI: 10.1055/a-1916-8597
Übersichtsarbeit

Ernährungsaspekte bei Osteoporose

Nutritional Aspects in Osteoporosis
Katharina Schultz
1   Klinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
,
Uwe Maus
1   Klinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
,
Thomas Brabant
2   Kardiologie, Herzzentrum Bremen, Bremen, Germany
,
Niklas Wergen
3   Orthopädie und Unfallchirurgie, Universitätsklinikum Düsseldorf, Dusseldorf, Germany
,
Christoph Beyersdorf
4   Orthopädie und Unfallchirurgie, Uniklinik Düsseldorf, Düsseldorf, Germany
› Author Affiliations

Zusammenfassung

Osteoporose und Sarkopenie sind entscheidende Faktoren für den altersabhängigen Anstieg des Frakturrisikos. Eine knochenbewusste Ernährung ist entscheidender Bestandteil sowohl der Prävention als auch der Basistherapie der Osteoporose. Eine ausreichende Zufuhr von Calcium als wichtiger Bestandteil des Knochengewebes ist sowohl zur Erreichung der peak bone mass während der Wachstumsphase als auch bei Osteoporose essentiell. Gerade auch unter einer medikamentösen Osteoporosetherapie sollte auf eine ausreichende Zufuhr geachtet werden. Ein Großteil der europäischen Gesellschaft weist einen Vitamin-D-Mangel auf. Neben einem Effekt auf die Calciumhomöostase und die Knochenmineralisation, beeinflusst Vitamin D auch die Muskulatur und das Sturzrisiko. Gerade eine kombinierte Substitution von Calcium und Vitamin D scheint sich günstig auf das Frakturrisiko auszuwirken. Ebenso ist ein Mangel von Vitamin K weit verbreitet. Vitamin K hat eine relevante Funktion bei der Knochenmineralisation sowie bei der Verhinderung von ektopen Mineralisationen. Welche Wirkung eine Substitution auf das Frakturrisiko hat, wird aktuell noch kontrovers diskutiert. Proteine sind ein wesentlicher Baustein von Muskulatur und Knochen. Darüberhinaus führt eine erhöhte Zufuhr zur Sekretion von IGF-I, welches verschiedene günstige Effekte auf den Knochenstoffwechsel hat. Bezüglich einer Senkung des Frakturrisikos sind auch hier inkonsistente Studienergebnisse zu finden. Der über längere Zeit postulierte negative Effekt von tierischem Eiweiß auf die Knochenhomöostase konnte in neueren Studien nicht verifiziert werden.

Abstract

Osteoporosis and sarcopenia are critical factors in the age-related increase in fracture risk. A bone-conscious diet is a critical component of both prevention and basic treatment of osteoporosis. An adequate supply of calcium as an important component of bone tissue is essential both to achieve peak bone mass during the growth phase and in osteoporosis. Especially during osteoporosis drug therapy, adequate intake should be ensured, A large proportion of European society is vitamin D deficient. In addition to an effect on calcium homeostasis and bone mineralization, vitamin D also influences musculature and fall risk. Especially a combined substitution of calcium and vitamin D seems to have a favorable effect on the fracture risk. Similarly, a deficiency of vitamin K is widespread. Vitamin K has a relevant function in bone mineralization as well as in the prevention of ectopic mineralization. The effect of substitution on fracture risk is still controversial. Proteins are an essential building block of muscles and bones. Furthermore, an increased intake leads to the secretion of IGF-I, which has various beneficial effects on bone metabolism. Regarding a reduction of the fracture risk, inconsistent study results can be found here as well. The long postulated negative effect of animal protein on bone homeostasis could not be verified in recent studies.



Publication History

Received: 14 June 2022

Accepted: 01 August 2022

Article published online:
08 September 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 [Anonym] Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 1993; 94: 646-650
  • 2 Cruz-Jentoft AJ, Bahat G, Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48: 16-31
  • 3 Herrmann M, Engelke K, Ebert R. et al. Interactions between Muscle and Bone-Where Physics Meets Biology. Biomolecules 2020; 10
  • 4 Li G, Zhang L, Wang D. et al. Muscle-bone crosstalk and potential therapies for sarco-osteoporosis. J Cell Biochem 2019; 120: 14262-14273
  • 5 Papadopoulou SK, Papadimitriou K, Voulgaridou G. et al. Exercise and Nutrition Impact on Osteoporosis and Sarcopenia-The Incidence of Osteosarcopenia: A Narrative Review. Nutrients 2021; 13
  • 6 Foger-Samwald U, Dovjak P, Azizi-Semrad U. et al. Osteoporosis: Pathophysiology and therapeutic options. EXCLI J 2020; 19: 1017-1037
  • 7 Kim JW, Kim R, Choi H. et al. Understanding of sarcopenia: from definition to therapeutic strategies. Arch Pharm Res 2021; 44: 876-889
  • 8 Buschhorn-Milberger V, Erkenberg J, Guminski B. et al. Evidenz-basierte Prophylaxe, Diagnostik und Therapie der Osteoporose im Jahre 2019. Arthritis und Rheuma 2019; 39: 375-384
  • 9 Abrams SA. Bone Health in School Age Children: Effects of Nutritional Intake on Outcomes. Front Nutr 2021; 8: 773425
  • 10 Wolf CA, Malone T, McFadden BR. Beverage milk consumption patterns in the United States: Who is substituting from dairy to plant-based beverages?. J Dairy Sci 2020; 103: 11209-11217
  • 11 Thomasius F, Baum E, Bernecker P. et al. DVO Leitlinie 2017 zur Prophylaxe, Diagnostik und Therapie der Osteoporose bei postmenopausalen Frauen und Männern. Osteologie 2018; 27: 154-160
  • 12 Society GN. New reference values for calcium. 2013
  • 13 Amling M, Barvencik F. Calcium and vitamin D in osteology. Z Rheumatol 2015; 74: 421-432 quiz 433-424
  • 14 Reid IR, Bristow SM, Bolland MJ. Calcium supplements: benefits and risks. J Intern Med 2015; 278: 354-368
  • 15 Reid IR, Bolland MJ. Calcium and/or Vitamin D Supplementation for the Prevention of Fragility Fractures: Who Needs It?. Nutrients 2020; 12
  • 16 Reid IR, Ames RW, Evans MC. et al. Long-term effects of calcium supplementation on bone loss and fractures in postmenopausal women: a randomized controlled trial. Am J Med 1995; 98: 331-335
  • 17 Tang BM, Eslick GD, Nowson C. et al. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet 2007; 370: 657-666
  • 18 Bolland MJ, Leung W, Tai V. et al. Calcium intake and risk of fracture: systematic review. Bmj 2015; 351: h4580
  • 19 Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab 1988; 67: 373-378
  • 20 González-Gross M, Valtueña J, Breidenassel C. et al. Vitamin D status among adolescents in Europe: the Healthy Lifestyle in Europe by Nutrition in Adolescence study. Br J Nutr 2012; 107: 755-764
  • 21 Bischoff-Ferrari HA. Vitamin D in geriatric patients. Internist (Berl) 2020; 61: 535-540
  • 22 Society GN. New reference values for vitamin D. 2012
  • 23 Bischoff-Ferrari HA. Optimal serum 25-hydroxyvitamin D levels for multiple health outcomes. Adv Exp Med Biol 2014; 810: 500-525
  • 24 Sanders KM, Stuart AL, Williamson EJ. et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. Jama 2010; 303: 1815-1822
  • 25 Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ. et al. Monthly High-Dose Vitamin D Treatment for the Prevention of Functional Decline: A Randomized Clinical Trial. JAMA Intern Med 2016; 176: 175-183
  • 26 Bischoff-Ferrari HA, Orav EJ, Abderhalden L. et al. Vitamin D supplementation and musculoskeletal health. Lancet Diabetes Endocrinol 2019; 7: 85
  • 27 Martiniakova M, Babikova M, Mondockova V. et al. The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 2022; 14
  • 28 Kemi VE, Karkkainen MU, Lamberg-Allardt CJ. High phosphorus intakes acutely and negatively affect Ca and bone metabolism in a dose-dependent manner in healthy young females. Br J Nutr 2006; 96: 545-552
  • 29 Kemi VE, Rita HJ, Karkkainen MU. et al. Habitual high phosphorus intakes and foods with phosphate additives negatively affect serum parathyroid hormone concentration: a cross-sectional study on healthy premenopausal women. Public Health Nutr 2009; 12: 1885-1892
  • 30 Tucker KL, Morita K, Qiao N. et al. Colas, but not other carbonated beverages, are associated with low bone mineral density in older women: The Framingham Osteoporosis Study. Am J Clin Nutr 2006; 84: 936-942
  • 31 Wyshak G. Teenaged girls, carbonated beverage consumption, and bone fractures. Arch Pediatr Adolesc Med 2000; 154: 610-613
  • 32 Saris NE, Mervaala E, Karppanen H. et al. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 2000; 294: 1-26
  • 33 Leidi M, Dellera F, Mariotti M. et al. High magnesium inhibits human osteoblast differentiation in vitro. Magnes Res 2011; 24: 1-6
  • 34 Castiglioni S, Cazzaniga A, Albisetti W. et al. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients 2013; 5: 3022-3033
  • 35 Capozzi A, Scambia G, Lello S. Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas 2020; 140: 55-63
  • 36 Nieves JW. Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D. Osteoporos Int 2013; 24: 771-786
  • 37 Houtkooper LB, Ritenbaugh C, Aickin M. et al. Nutrients, body composition and exercise are related to change in bone mineral density in premenopausal women. J Nutr 1995; 125: 1229-1237
  • 38 Popa DS, Bigman G, Rusu ME. The Role of Vitamin K in Humans: Implication in Aging and Age-Associated Diseases. Antioxidants (Basel) 2021; 10
  • 39 Mladěnka P, Macáková K, Kujovská Krčmová L. et al. Vitamin K – sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr Rev 2022; 80: 677-698
  • 40 Riphagen IJ, Keyzer CA, Drummen NEA. et al. Prevalence and Effects of Functional Vitamin K Insufficiency: The PREVEND Study. Nutrients 2017; 9
  • 41 Sato T, Inaba N, Yamashita T. MK-7 and Its Effects on Bone Quality and Strength. Nutrients 2020; 12
  • 42 Mandatori D, Pelusi L, Schiavone V. et al. The Dual Role of Vitamin K2 in “Bone-Vascular Crosstalk”: Opposite Effects on Bone Loss and Vascular Calcification. Nutrients 2021; 13
  • 43 Stock M, Schett G. Vitamin K-Dependent Proteins in Skeletal Development and Disease. Int J Mol Sci 2021; 22
  • 44 Mott A, Bradley T, Wright K. et al. Effect of vitamin K on bone mineral density and fractures in adults: an updated systematic review and meta-analysis of randomised controlled trials. Osteoporos Int 2019; 30: 1543-1559
  • 45 Mott A, Bradley T, Wright K. et al. Correction to Effect of vitamin K on bone mineral density and fractures in adults: an updated systematic review and meta-analysis of randomised controlled trials. Osteoporos Int 2020; 31: 2269-2270
  • 46 Su S, He N, Men P. et al. The efficacy and safety of menatetrenone in the management of osteoporosis: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 2019; 30: 1175-1186
  • 47 Su S, He N, Men P. et al. Correction to: The efficacy and safety of menatetrenone in the management of osteoporosis: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 2021; 32: 2141-2142
  • 48 Hu L, Ji J, Li D. et al. The combined effect of vitamin K and calcium on bone mineral density in humans: a meta-analysis of randomized controlled trials. J Orthop Surg Res 2021; 16: 592
  • 49 Rønn SH, Harsløf T, Oei L. et al. The effect of vitamin MK-7 on bone mineral density and microarchitecture in postmenopausal women with osteopenia, a 3-year randomized, placebo-controlled clinical trial. Osteoporos Int 2021; 32: 185-191
  • 50 Rønn SH, Harsløf T, Pedersen SB. et al. Vitamin K2 (menaquinone-7) prevents age-related deterioration of trabecular bone microarchitecture at the tibia in postmenopausal women. Eur J Endocrinol 2016; 175: 541-549
  • 51 EFSA Panel on Dietetic Products N, Allergies, Turck D et al. Dietary reference values for vitamin K. EFSA Journal 2017; 15: e04780
  • 52 Muñoz-Garach A, García-Fontana B, Muñoz-Torres M. Nutrients and Dietary Patterns Related to Osteoporosis. Nutrients 2020; 12
  • 53 Rizzoli R, Biver E, Bonjour JP. et al. Benefits and safety of dietary protein for bone health-an expert consensus paper endorsed by the European Society for Clinical and Economical Aspects of Osteopororosis, Osteoarthritis, and Musculoskeletal Diseases and by the International Osteoporosis Foundation. Osteoporos Int 2018; 29: 1933-1948
  • 54 Kanis JA, Borgström F, Compston J. et al. SCOPE: a scorecard for osteoporosis in Europe. Arch Osteoporos 2013; 8: 144
  • 55 Bonjour JP. Nutritional disturbance in acid-base balance and osteoporosis: a hypothesis that disregards the essential homeostatic role of the kidney. Br J Nutr 2013; 110: 1168-1177
  • 56 Robinson SM, Reginster JY, Rizzoli R. et al. Does nutrition play a role in the prevention and management of sarcopenia?. Clin Nutr 2018; 37: 1121-1132
  • 57 Xu ZR, Tan ZJ, Zhang Q. et al. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis. Br J Nutr 2015; 113: 25-34
  • 58 Suchorski N, Richter M, Bechthold A. Referenzwerte für die Zufuhr von Kohlenhydraten, Fett und Protein. Ernährung & Medizin 2019; 34: 174-178
  • 59 de Sire A, Ferrillo M, Lippi L. et al. Sarcopenic Dysphagia, Malnutrition, and Oral Frailty in Elderly: A Comprehensive Review. Nutrients 2022; 14
  • 60 Wallace TC, Frankenfeld CL. Dietary Protein Intake above the Current RDA and Bone Health: A Systematic Review and Meta-Analysis. J Am Coll Nutr 2017; 36: 481-496
  • 61 Promislow JH, Goodman-Gruen D, Slymen DJ. et al. Protein consumption and bone mineral density in the elderly: the Rancho Bernardo Study. Am J Epidemiol 2002; 155: 636-644
  • 62 Coin A, Perissinotto E, Enzi G. et al. Predictors of low bone mineral density in the elderly: the role of dietary intake, nutritional status and sarcopenia. Eur J Clin Nutr 2008; 62: 802-809
  • 63 Deane CS, Bass JJ, Crossland H. et al. Animal, Plant, Collagen and Blended Dietary Proteins: Effects on Musculoskeletal Outcomes. Nutrients 2020; 12
  • 64 Conigrave AD, Brown EM, Rizzoli R. Dietary protein and bone health: roles of amino acid-sensing receptors in the control of calcium metabolism and bone homeostasis. Annu Rev Nutr 2008; 28: 131-155
  • 65 Itkonen ST, Paivarinta E, Pellinen T. et al. Partial Replacement of Animal Proteins with Plant Proteins for 12 Weeks Accelerates Bone Turnover Among Healthy Adults: A Randomized Clinical Trial. J Nutr 2021; 151: 11-19
  • 66 Iguacel I, Miguel-Berges ML, Gomez-Bruton A. et al. Veganism, vegetarianism, bone mineral density, and fracture risk: a systematic review and meta-analysis. Nutr Rev 2019; 77: 1-18
  • 67 Shams-White MM, Chung M, Fu Z. et al. Animal versus plant protein and adult bone health: A systematic review and meta-analysis from the National Osteoporosis Foundation. PLoS One 2018; 13: e0192459
  • 68 Sahni S, Cupples LA, McLean RR. et al. Protective effect of high protein and calcium intake on the risk of hip fracture in the Framingham offspring cohort. J Bone Miner Res 2010; 25: 2770-2776
  • 69 Kim S, Henneicke H, Cavanagh LL. et al. Osteoblastic glucocorticoid signaling exacerbates high-fat-diet- induced bone loss and obesity. Bone Res 2021; 9: 40
  • 70 Karpouzos A, Diamantis E, Farmaki P. et al. Nutritional Aspects of Bone Health and Fracture Healing. J Osteoporos 2017; 2017: 4218472
  • 71 Corwin RL, Hartman TJ, Maczuga SA. et al. Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. J Nutr 2006; 136: 159-165
  • 72 Orchard TS, Cauley JA, Frank GC. et al. Fatty acid consumption and risk of fracture in the Women’s Health Initiative. Am J Clin Nutr 2010; 92: 1452-1460
  • 73 Garcia-Martinez O, Rivas A, Ramos-Torrecillas J. et al. The effect of olive oil on osteoporosis prevention. Int J Food Sci Nutr 2014; 65: 834-840
  • 74 Roncero-Martin R, Aliaga Vera I, Moreno-Corral LJ. et al. Olive Oil Consumption and Bone Microarchitecture in Spanish Women. Nutrients 2018; 10
  • 75 Gera S, Pooladanda V, Godugu C. et al. Rutin nanosuspension for potential management of osteoporosis: effect of particle size reduction on oral bioavailability, in vitro and in vivo activity. Pharm Dev Technol 2020; 25: 971-988
  • 76 Wong SK, Chin KY, Ima-Nirwana S. The Osteoprotective Effects Of Kaempferol: The Evidence From In Vivo And In Vitro Studies. Drug Des Devel Ther 2019; 13: 3497-3514
  • 77 Polito A, Barnaba L, Ciarapica D. et al. Osteosarcopenia: A Narrative Review on Clinical Studies. Int J Mol Sci 2022; 23
  • 78 Fleg JL. Aerobic exercise in the elderly: a key to successful aging. Discov Med 2012; 13: 223-228
  • 79 Palombaro KM, Black JD, Buchbinder R. et al. Effectiveness of exercise for managing osteoporosis in women postmenopause. Phys Ther 2013; 93: 1021-1025
  • 80 Yoo SZ, No MH, Heo JW. et al. Role of exercise in age-related sarcopenia. J Exerc Rehabil 2018; 14: 551-558
  • 81 Lichtenberg T, von Stengel S, Sieber C. et al. The Favorable Effects of a High-Intensity Resistance Training on Sarcopenia in Older Community-Dwelling Men with Osteosarcopenia: The Randomized Controlled FrOST Study. Clin Interv Aging 2019; 14: 2173-2186
  • 82 Kemmler W, Kohl M, Jakob F. et al. Effects of High Intensity Dynamic Resistance Exercise and Whey Protein Supplements on Osteosarcopenia in Older Men with Low Bone and Muscle Mass. Final Results of the Randomized Controlled FrOST Study. Nutrients 2020; 12
  • 83 Kemmler W, Schoene D, Kohl M. et al. Changes in Body Composition and Cardiometabolic Health After Detraining in Older Men with Osteosarcopenia: 6-Month Follow-Up of the Randomized Controlled Franconian Osteopenia and Sarcopenia Trial (FrOST) Study. Clin Interv Aging 2021; 16: 571-582
  • 84 Agnihothri S, Cui L, Delasay M. et al. The value of mHealth for managing chronic conditions. Health Care Manag Sci 2020; 23: 185-202
  • 85 Alhussein G, Hadjileontiadis L. Digital Health Technologies for Long-term Self-management of Osteoporosis: Systematic Review and Meta-analysis. JMIR Mhealth Uhealth 2022; 10: e32557
  • 86 Cao L, Yin M, Shi TQ. et al. Engineering Yarrowia lipolytica to produce nutritional fatty acids: Current status and future perspectives. Synth Syst Biotechnol 2022; 7: 1024-1033
  • 87 Xu Q, Li D, Chen J. et al. Crosstalk between the gut microbiota and postmenopausal osteoporosis: Mechanisms and applications. Int Immunopharmacol 2022; 110: 108998
  • 88 Ding K, Hua F, Ding W. Gut Microbiome and Osteoporosis. Aging Dis 2020; 11: 438-447
  • 89 Li S, Mao Y, Zhou F. et al. Gut microbiome and osteoporosis: a review. Bone Joint Res 2020; 9: 524-530