Die Wirbelsäule 2023; 07(02): 94-101
DOI: 10.1055/a-1947-7147
Übersicht

Biomechanik der HWS und ihre anatomischen Grundlagen

Cervical spine biomechanics and its anatomic basis
Sebastian Decker
1   Klinik für Unfallchirurgie, Medizinische Hochschule Hannover, Hannover, Deutschland
,
Sabine Roth
1   Klinik für Unfallchirurgie, Medizinische Hochschule Hannover, Hannover, Deutschland
,
Ralph Gaulke
1   Klinik für Unfallchirurgie, Medizinische Hochschule Hannover, Hannover, Deutschland
,
Stephan Sehmisch
1   Klinik für Unfallchirurgie, Medizinische Hochschule Hannover, Hannover, Deutschland
,
Heiko Koller
2   Zentrum für Wirbelsäulen- und Skoliosetherapie, Asklepios Klinikum Bad Abbach GmbH, Bad Abbach, Deutschland
› Author Affiliations

Zusammenfassung

Dieser Artikel beschreibt die Biomechanik der Halswirbelsäule. Das Verständnis von physiologischer Anatomie sowie den funktionellen Zusammenhängen ist Grundlage der Behandlung zervikaler Pathologien. Abweichungen von der physiologischen Biomechanik können zufällig und zunächst ohne Krankheitswert sein, krankheitsbedingt oder iatrogen durch z.B. Operationen hervorgerufen werden. Darüber hinaus ist es von Bedeutung die physiologische Biomechanik auch in der Planung von Operationen zu beachten, ebenso z.B. in der konservativen und manualtherapeutischen Therapie.

Abstract

This article describes the cervical spine biomechanics and its anatomic basis. Deep understanding of anatomy and functioning is inevitable to treat cervical pathologies. Deviations of regular anatomy and biomechanics can occur with or without pathological significance. Surgery itself can change biomechanical interactions. Therefore, cervical spine biomechanics should also be considered when planning surgery. Moreover, it is important for conservative therapy, especially manual therapy.



Publication History

Article published online:
02 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Galindez-Ibarbengoetxea X, Setuain I, Andersen LL. et al. Effects of cervical high-velocity low-amplitude techniques on range of motion, strength performance, and cardiovascular outcomes: A review. J Altern Complement Med 2017; 23: 667-675
  • 2 Milne N. Composite motion in cervical disc segments. Clin Biomech (Bristol, Avon) 1993; 8: 193-202
  • 3 King LJ. Cervical spine. BMJ 2014; 348
  • 4 Tubbs RS, Rompala OJ, Verma K. et al. Analysis of the uncinate processes of the cervical spine: An anatomical study. J Neurosurg Spine 2012; 16: 402-407
  • 5 Mercer S, Bogduk N. The ligaments and annulus fibrosus of human adult cervical intervertebral discs. Spine (Phila Pa 1976) 1999; 24: 619-618
  • 6 Bogduk N, Mercer S. Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech (Bristol, Avon) 2000; 15: 633-648
  • 7 Zhou C, Wang H, Wang C. et al. Intervertebral range of motion characteristics of normal cervical spinal segments (C0-T1) during in vivo neck motions. J Biomech 2020; 98: 109418
  • 8 Anderst W, Rynearson B, West T. et al. Dynamic in vivo 3D atlantoaxial spine kinematics during upright rotation. J Biomech 2017; 60: 110-115
  • 9 Gutmann G. School headache and head posture. A contribution to the pathogenesis of anteflexion headache and the mechanics of the atlas. Z Orthop Ihre Grenzgeb 1969; 105: 497-515
  • 10 Koebke J, Kock C. Gelenke und Gelenkmechanik des zervikookzipitalen Überganges. In: Erkrankungen des zervikookzipitalen Übergangs. Spondylolisthesis. Wirbelsäule in Arbeit und Beruf. Berlin, Heidelberg: Springer; 2000: 32-36
  • 11 Boever F, Hennebert P. Non-traumatic dislocations of the cervical spine. Rev Chir Orthop Reparatrice Appar Mot 1953; 39: 24-69
  • 12 Bogduk N. Functional anatomy of the spine. Handb Clin Neurol 2016; 136: 675-688
  • 13 Dvorak J, Hayek J, Zehnder R. CT-functional diagnostics of the rotatory instability of the upper cervical spine. part 2. an evaluation on healthy adults and patients with suspected instability. Spine (Phila Pa 1976) 1987; 12: 726-731
  • 14 Peters B, Parizel PM, Van Goethem JW. Age-related changes to the craniocervical ligaments in asymptomatic subjects: A prospective MR study. Eur Spine J 2020; 29: 1029-1035
  • 15 Amevo B, Worth D, Bogduk N. Instantaneous axes of rotation of the typical cervical motion segments: A study in normal volunteers. Clin Biomech (Bristol, Avon) 1991; 6: 111-117
  • 16 Nowitzke A, Westaway M, Bogduk N. Cervical zygapophyseal joints: Geometrical parameters and relationship to cervical kinematics. Clin Biomech (Bristol, Avon) 1994; 9: 342-348
  • 17 Kim SH, Ham DW, Lee JI. et al. Locating the instant center of rotation in the subaxial cervical spine with biplanar fluoroscopy during in vivo dynamic flexion-extension. Clin Orthop Surg 2019; 11: 482-489
  • 18 Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976) 1983; 8: 817-831
  • 19 König SA, Spetzger U. Anatomische Aspekte. In: Degenerative Erkrankungen der Halswirbelsäule. Berlin, Heidelberg: Springer; 2014: 7-17
  • 20 Scheer JK, Tang JA, Smith JS. et al. Cervical spine alignment, sagittal deformity, and clinical implications: A review. J Neurosurg Spine 2013; 19: 141-159
  • 21 Yoganandan N, Kumaresan S, Pintar FA. Biomechanics of the cervical spine part 2. cervical spine soft tissue responses and biomechanical modeling. Clin Biomech (Bristol, Avon) 2001; 16: 1-27
  • 22 DeWit JA, Cronin DS. Cervical spine segment finite element model for traumatic injury prediction. J Mech Behav Biomed Mater 2012; 10: 138-150
  • 23 Hardacker JW, Shuford RF, Capicotto PN. et al. Radiographic standing cervical segmental alignment in adult volunteers without neck symptoms. Spine (Phila Pa 1976) 1997; 22 (13) 1472-1480
  • 24 Tang YC, Zhao WK, Yu M. et al. Normative values of cervical sagittal alignment according to the whole spine balance: Based on 126 asymptomatic chinese young adults. Beijing Da Xue Xue Bao Yi Xue Ban 2022; 54: 712-718
  • 25 Stein G, Meyer C, Ingenhoff L. et al. The biomechanics of hyperextension injuries of the subaxial cervical spine. Unfallchirurg 2017; 120: 590-594
  • 26 Kretzer RM, Hu N, Umekoji H. et al. The effect of spinal instrumentation on kinematics at the cervicothoracic junction: Emphasis on soft-tissue response in an in vitro human cadaveric model. J Neurosurg Spine 2010; 13: 435-442
  • 27 Tan LA, Yoganandan N, Choi H. et al. Biomechanical analysis of 3-level anterior cervical discectomy and fusion under physiologic loads using a finite element model. Neurospine 2022; 19: 385-392
  • 28 LeVasseur CM, Pitcairn SW, Okonkwo DO. et al. In vivo changes in dynamic adjacent segment motion 1 year after one and two-level cervical arthrodesis. Ann Biomed Eng 2022; 50: 871-881
  • 29 Goedmakers CMW, de Vries F, Bosscher L. et al. Long-term results of the NECK trial: Implanting a disc prosthesis after cervical anterior discectomy cannot prevent adjacent segment disease. 5-years clinical follow-up of a double-blinded randomised controlled trial. Spine J 2022;
  • 30 Kim B, Cho S, Hur JW. et al. Kinematics after cervical laminoplasty: Risk factors for cervical kyphotic deformity after laminoplasty. Spine J 2021; 21: 1822-1829
  • 31 Wei W, Du X, Li N. et al. Biomechanical influence of T1 tilt alteration on adjacent segments after anterior cervical fusion. Front Bioeng Biotechnol 2022; 10: 936749
  • 32 Yukawa Y, Kato F, Suda K. et al. Age-related changes in osseous anatomy, alignment, and range of motion of the cervical spine. part I: Radiographic data from over 1,200 asymptomatic subjects. Eur Spine J 2012; 21: 1492-1498