Subscribe to RSS
DOI: 10.1055/a-1949-1691
EEG-Update
Electroencephalography – an updateDurch die rasante Entwicklung digitaler Computertechniken und neuer Analysemethoden hat sich ein neuer Ansatz zur Analyse der Hirnströme (quantitatives EEG) ergeben, die in verschiedenen klinischen Bereichen der Neurologie und Psychiatrie bereits Ergebnisse zeigen. Die neuen Möglichkeiten der Analyse des EEG durch Einsatz künstlicher Intelligenz (Deep Learning) und großer Datenmengen (Big Data) sowie telemedizinischer Datenübermittlung und Interaktion wird den Einsatz der Methode vermutlich in den nächsten Jahren erweitern.
Abstract
Electroencephalography (EEG) is one of the oldest methods in neurophysiology and the only method still in clinical and scientific use. After the introduction about 90 years ago, it is not to be expected that significant innovations could be achieved using the methods of recording and evaluation that were customary up to recently. However, the rapid development of digital computer techniques and analysis methods (quantitative EEG) has resulted in a completely new approach to the analysis of brain waves, which is showing initial results in various clinical areas of neurology and psychiatry. New methods of analyzing the EEG such as artificial intelligence (deep learning) and the capability to process large amounts of data (big data) and telemedical innovations likely will improve the yield of the method in the near future.
Schlüsselwörter
EEG - quantitative Elektroenzephalografie - Epilepsie - Status epilepticus - künstliche IntelligenzKey words
EEG - quantitative electroencephalography - epilepsy - status epilepticus - artificial intelligencePublication History
Article published online:
29 November 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
Literatur
- 1 van Putten MJAM, Olbrich S, Arns M. Predicting sex from brain rhythms with deep learning. Sci Rep 2018; 8: 3069
- 2 Grant AC, Abdel-Baki SG, Weedon J. et al. EEG interpretation reliability and interpreter confidence: a large single-center study. Epilepsy Behav 2014; 32: 102-107
- 3 Benbadis SR. Just like EKGs!“ Should EEGs undergo a confirmatory interpretation by a clinical neurophysiologist?. Neurology 2013; 80: S47-S51
- 4 Benbadis SR, Beniczky S, Bertram E. et al. The role of EEG in patients with suspected epilepsy. Epileptic Disord 2020; 22: 143-155
- 5 Noachtar S, Rémi J. The role of EEG in epilepsy: A critical review. Epilepsy Behav 2009; 15: 22–33
- 6 Noachtar S. Das Problem mit dem EEG: Fehlinterpretation richtet großen Schaden an https://dgkn.de/fuer-experten/news/43-stellungnahme/179-stellungnahme-der-deutschen-gesellschaft-fuer-klinische-neurophysiologie-und-funktionelle-bildgebung-dgkn
- 7 Janszky J, Janszky I, Schulz R. et al. Temporal lobe epilepsy with hippocampal sclerosis: predictors for long-term surgical outcome. Brain 2005; 128: 395-404
- 8 Noachtar S, Bilgin O, Rémi J. et al. Interictal regional polyspikes in noninvasive EEG suggest cortical dysplasia as etiology of focal epilepsies. Epilepsia 2008; 49: 1011-1017
- 9 Baumgartner C, Hafner S, Koren JP. Automatische Erkennung von epilepsietypischen Potenzialen und Anfällen im EEG TT – Automatic Detection of Epileptiform Potentials and Seizures in the EEG. Klin Neurophysiol 2020; 51: 118-131
- 10 Raeisi K, Khazaei M, Croce P. et al. A graph convolutional neural network for the automated detection of seizures in the neonatal EEG. Comput Methods Programs Biomed 2022; 222: 106950
- 11 Variane GFT, Camargo JPV, Rodrigues DP. et al. Current status and future directions of neuromonitoring with emerging technologies in neonatal care. Front Pediatr 2021; 9: 755144
- 12 Klotz KA, Sag Y, Schönberger J. et al. Scalp ripples can predict development of epilepsy after first unprovoked seizure in childhood. Ann Neurol 2021; 89: 134-142
- 13 Proix T, Truccolo W, Leguia MG. et al. Forecasting seizure risk in adults with focal epilepsy: a development and validation study. Lancet Neurol 2021; 20: 127-135
- 14 Wiegand TLT, Rémi J, Dimitriadis K. Electroencephalography in delirium assessment: a scoping review. BMC Neurol 2022; 22: 86
- 15 Noachtar S, Rémi J. EEG-Klassifikation. In: Elektroenzephalographie. Stuttgart: Kohlhammer; 2018: 175-267
- 16 Noachtar S. Systematische Beschreibung, Klassifikation und Beurteilung. In: Bischoff C, Straube A, Hrsg. Leitlinien Klinische Neurophysiologie. Stuttgart: Kohlhammer; 2014: 165-168
- 17 Lorenzl S, Mayer S, Feddersen B. et al. Nonconvulsive status epilepticus in palliative care patients. J Pain Symptom Manage 2010; 40: 460-465
- 18 Deutsche Gesellschaft für Neurologie. Leitlinien Demenz für Diagnostik und Therapie in der Neurologie. Im Internet: https://dgn.org/leitlinien/leitlinie-diagnose-und-therapie-von-demenzen-2016/
- 19 Law ZK, Todd C, Mehraram R. et al. The role of EEG in the diagnosis, prognosis and clinical correlations of dementia with lewy bodies – a systematic review. Diagnostics (Basel, Switzerland) 2020; 10
- 20 Admiraal MM, van Rootselaar A-F, Hofmeijer J. et al. Electroencephalographic reactivity as predictor of neurological outcome in postanoxic coma: A multicenter prospective cohort study. Ann Neurol 2019; 86: 17-27
- 21 Towne AR, Waterhouse EJ, Boggs JG. et al. Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology 2000; 54: 340-345
- 22 Benbadis SR, Tatum WO. Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology 2000; 55: 1421-1423
- 23 Fierain A, Gaspard N, Lejeune N. et al. Beware of nonconvulsive seizures in prolonged disorders of consciousness: Long-term EEG monitoring is the key. Clin Neurophysiol 2022; 136: 228-234
- 24 Zawar I, Briskin I, Hantus S. Risk factors that predict delayed seizure detection on continuous electroencephalogram (cEEG) in a large sample size of critically ill patients. Epilepsia open 2022; 7: 131-143
- 25 Saes M, Meskers CGM, Daffertshofer A. et al. Are early measured resting-state EEG parameters predictive for upper limb motor impairment six months poststroke. Clin Neurophysiol 2021; 132: 56-62
- 26 Zhang L, Zheng W, Chen F. et al. Associated factors and prognostic implications of non-convulsive status epilepticus in ischemic stroke patients with impaired consciousness. Front Neurol 2021; 12: 795076
- 27 Ip C-T, Olbrich S, Ganz M. et al. Pretreatment qEEG biomarkers for predicting pharmacological treatment outcome in major depressive disorder: Independent validation from the NeuroPharm study. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 2021; 49: 101-112
- 28 Arns M, Bruder G, Hegerl U. et al. EEG alpha asymmetry as a gender-specific predictor of outcome to acute treatment with different antidepressant medications in the randomized iSPOT-D study. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 2016; 127: 509-519
- 29 Deutsche Gesellschaft für Klinische Neurophysiologie (DGKN). Zertifikat Teleneurophysiologie-Netzwerk. Im Internet: https://dgkn.de/component/sppagebuilder/?view=page&id=538(Stand: 26.09.2022)
- 30 Cossu A, Lo Barco T, Darra F. et al. Remote Teamwork Management of NORSE During the COVID-19 Lockdown. Neurol Clin Pract 2021; 11: e170-e173
- 31 von Wrede R, Moskau-Hartmann S, Baumgartner T. et al. Counseling of people with epilepsy via telemedicine: Experiences at a German tertiary epilepsy center during the COVID-19 pandemic. Epilepsy Behav 2020; 112: 107298