Phlebologie 2023; 52(03): 129-139
DOI: 10.1055/a-1969-1443
Curriculare Fortbildung

Physiologie des Venensystems der Extremitäten – Teil 1: Grundbausteine

Physiology of the Venous System of the Extremities – Part 1: Basic Elements
Uwe Wahl

Das Venensystem der Extremitäten ist ständigen hydrostatischen Druckveränderungen ausgesetzt. Es muss neben der Volumenspeicherung auch Funktionen im Stoffaustausch übernehmen. Die Kenntnis über diese physiologischen Mechanismen hilft im klinischen Alltag bei der Diagnostik von Venenerkrankungen und bei der Auswahl der Therapieform. Die Venenfunktion kann durch 4 Grundbausteine definiert werden: Venenanatomie, Herz-Kreislauf-System/Zwerchfellpumpe, Wadenmuskelpumpe und Fußpumpe.

Abstract

The venous system is constantly subject to changes in hydrostatic pressure in the extremities as the body changes position. In addition to storing blood volumes, the venous system also plays an important role in the exchange of substances. In the first part of the training series, the function of the veins is defined by four basic elements: vein anatomy, cardiovascular system/diaphragmatic descent, the foot pump, and the calf muscle pump. Venous valves are duplications of the intima, and valve cycles consist of an opening, equilibrium, and closing phase. The vascular width of a vein is regulated by neural-humoral controls so that a sympathetically induced adrenergic stimulation mediates venous constriction. The calf muscle pump is divided into proximal and distal parts whose haemodynamic effects differ. In the foot there is a medial and a lateral plantar vein, with the lateral plantar vein playing a crucial role (foot pump) in mobilizing blood volume due to its size and venous capacity. The function of the diaphragmatic descent on the venous return in the supine position without movement of the lower extremity depends on the degree of filling of the inferior vena cava. In combination with the calf muscle pump and foot pump, this results in a complex functional unit. In everyday clinical practice, knowledge of the physiological mechanisms of venous return helps in the diagnosis of venous diseases, and in the selection of the correct therapeutic approach.



Publication History

Article published online:
02 June 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Hochauf S, Sternitzky R, Schellong SM. Struktur und Funktion des venösen Systems. Herz 2007; 32: 3-9
  • 2 Aumüller G. Anatomie. Duale Reihe. 2. überarbeitete Auflage. Georg Thieme Verlag; Stuttgart: 2010
  • 3 Brenner E. Das Lymphsystem und das Starlingsche Gleichgewicht. Lymphologie in Forschung und Praxis 2018; 22: 9-13
  • 4 Brenner E. Das Lymphsystem und das Starlingsche Gleichgewicht – Ergänzung. Lymphologie in Forschung und Praxis 2018; 22: 67-69
  • 5 Caggiata A. The venous valves of the lower limbs. Phlebolymphology 2013; 20: 87-95
  • 6 Gallenkemper G. Hämodynamik, Physiologie, Pathophysiologie und Pathogenese chronischer Venenerkrankungen. In: Rabe E. Grundlagen der Phlebologie. Köln: Viavital Verlag; 2003
  • 7 Lurie F, Kistner RL, Eklof B. et al. Mechanism of venous valve closure and role of the valve in circulation: a new concept. J Vasc Surg 2003; 38: 955-961
  • 8 Smith HJ, Grøttum P, Simonsen S. Ultrasonic assessment of abdominal venous return. I. Effect of cardiac action and respiration on mean velocity pattern, cross-sectional area and flow in the inferior vena cava and portal vein. Acta Radiol Diagn (Stockh) 1985; 26: 581-588
  • 9 Takata M, Robotham JL. Effects of inspiratory diaphragmatic descent on inferior vena caval venous return. J Appl Physiol 1992; 72: 597-607
  • 10 Amoore JN, Santamore WP. Venous collpase an the respiratory variability in systemic venous return. Cardiovascular Res 1994; 28: 472-479
  • 11 Osada T, Katsumura T, Hamaoka T. et al. Quantitativ effects of respiration on venous return during single knee extension-flexion. Int J Sports Med 2002; 23: 183-190
  • 12 Miller JD, Pegelow DF, Jacques AJ. et al. Skeletal muscle pump versus respiratory muscle pump: modulation of venous return from the locomotor limb in humans. J Physiol 2005; 563: 925-943
  • 13 Keijers JMT, Leguy CAD, Huberts W. et al. A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function. Int J Numer Method Biomed Eng 2015; 31: e02716
  • 14 Roddie IC. Modern views on physiology. 3. The venous system. Practitioner 1969; 202: 441-449
  • 15 Gaehtgens P. Das Kreislaufsystem. In: Klinke R, Silbernagel S. Lehrbuch der Physiologie. Stuttgart: Georg Thieme Verlag; 2003
  • 16 Bollinger A. Funktionelle Angiologie. Lehrbuch und Atlas. 1. Auflage. Stuttgart: Georg Thieme Verlag; 1979
  • 17 Stranden E. Dynamic leg volume changes when sttting in a locked and free floating tilt oé ce chair. Ergonomics 2000; 43: 421-433
  • 18 Recek C. Venous pressure gradients in the lower extremity and the hemodynamic consequences. Vasa 2010; 39: 292-297
  • 19 Recek C. Calf pump activity influencing venous hemodynamics in the lower extremity. Int J Angiol 2013; 22: 23-30
  • 20 Huck K, Huck B. 2.3 Hämodynamik des venösen Gefäßsystems. In: Amann-Vesti B, Thalhammer C, Huck K. Kursbuch Doppler- und Duplexsonografie. Stuttgart: Georg Thieme Verlag; 2012
  • 21 Pollack AA, Taylor BE, Myers TT. et al. The effect of exercise and body position on the venous pressure at the ankle in patients having venous valvular defects. J Clin Invest 1949; 28: 559-563
  • 22 Noble A, Johnson R, Thomas A. et al. Organsysteme verstehen – Herz-Kreislauf-System. 1. Auflage. Urban & Fischer Verlag/Elsevier GmbH; 2017
  • 23 Tiedt N. Physiologie und Pathophysiologie des Venensystems. Z ärztl Fortbild 1979; 73: 5-11
  • 24 Hassan AAK, Tooke JE. Mechanism of the postural vasoconstrictor response in the human foot. Clin Sci (Lond) 1988; 75: 379-387
  • 25 Meissner MH. Lower Extremity Venous Anatomy. Semin Intervent Radiol 2005; 22: 147-156
  • 26 Keane TFL, Fegan WG. Physiology of the calf veins. Angiology 1969; 20: 489-495
  • 27 Alimi YS, Barthelemy P, Juhan C. Venous pump of the calf: a study of venous and muscular pressures. J Vasc Surg 1994; 20: 728-735
  • 28 Tsuda K, Takahira N, Sakamoto M. et al. Intense triceps surae contraction increases lower extremity venous blood flow. Prog Rehabil Med 2017; 2: 20170009
  • 29 Gardner AMN, Fox RH. The venous pump oft he human foot-preliminary report. Bristol Med Chir J 1983; 98: 109-112
  • 30 White JV, Katz ML, Cisek P. et al. Venous outflow of the leg: anatomy and physiologic mechanism of the plantar venous plexus. J Vasc Surg 1996; 24: 819-824
  • 31 Corley GJ, Broderick BJ, Nestor SM. et al. The anatomy and Physiology of the venous foot pump. Anat Rec (Hoboken) 2010; 293: 370-378
  • 32 Uhl JF, Gillot C. Anatomy of the foot venous pump: physiology and influence on chronic venous disease. Phlebology 2012; 27: 219-230
  • 33 Van Bemmelen PS, Spivack D, Kelly P. Reflux in foot veins is associated with venous toe and forefoot ulceration. J Vasc Surg 2011; 53: 394-398
  • 34 Williams KJ, Ayekoloye O, Moore HM. et al. The calf muscle pump revisited. J Vasc Surg Venous Lymphat Disord 2014; 2: 329-334
  • 35 Hirsch T, Wahl U. CME – Venenleiden und der Einfluss berufsbedingter Exposition. Vasomed 2022; 34: 210-216
  • 36 Horwood A. The biomechanical function of the foot pump in venous return from the lower extremity during the human gait cycle: An expansion of the gait model of the foot pump. Med Hypotheses 2019; 129: 109-220
  • 37 Broderick BJ, Corley GJ, Quondamatteo F. et al. Venous emptying from the foot: influences of weight bearing, toe curls, electrical stimulation, passive compression, and posture. J Appl Physiol 2010; 109: 1045-1052
  • 38 Lattimer CR, Franceschi C. Optimizing calf muscle pump function. Phlebology 2018; 33: 353-360