Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(08): 1260-1266
DOI: 10.1055/a-1979-6009
DOI: 10.1055/a-1979-6009
paper
Synthesis of Five-Membered Organoborate Heterocycles via a Metal-Free Carboboration and Their Use in Cross-Coupling Reactions
We are grateful to the Ministerio de Ciencia e Innovación, AEI, and FEDER (project PID2020-115128RB-I00 and FPU predoctoral grant for I.V.) and the Instituto de Salud Carlos III (FEDER funds, ISCIII RICORS2040 RD21/0005/0016) for financial support.
Abstract
Treatment of various vinylbenzopyridines with allyl(dichloro)borane affords five-membered organoborate heterocycles via a metal-free carboboration. The reaction between these organoborates and Grignard reagents increases the number of derivatives belonging to this novel family of four-coordinate organoboron compounds. Some of them were used as reagents in phenylations and methylations in moderate to high yields under standard palladium-catalyzed cross-coupling reaction conditions.
Key words
metal-free carboboration - organoboron compounds - organoborate heterocycles - cross-coupling reactions - boron chemistrySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1979-6009.
- Supporting Information
Publication History
Received: 25 October 2022
Accepted after revision: 15 November 2022
Accepted Manuscript online:
15 November 2022
Article published online:
30 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Yang G.-W, Zhang Y.-Y, Wu G.-P. Acc. Chem. Res. 2021; 54: 4434
- 1b Stephan DW. Acc. Chem. Res. 2015; 48: 306
- 2 Meng W, Feng X, Du H. Acc. Chem. Res. 2018; 51: 191
- 3a von Grotthuss E, John A, Kaese T, Wagner M. Asian J. Org. Chem. 2018; 7: 37
- 3b Ji L, Griesbeck S, Marder TB. Chem. Sci. 2017; 8: 846
- 4a Jäkle F. Chem. Rev. 2010; 110: 3985
- 4b Wade CR, Broomsgrave AE. J, Aldridge S, Gabbaï FP. Chem. Rev. 2010; 110: 3958
- 5a Abengózar A, García-García P, Fernández-Rodríguez MA, Sucunza D, Vaquero JJ. Adv. Heterocycl. Chem. 2021; 135: 197
- 5b Giustra ZX, Liu S.-Y. J. Am. Chem. Soc. 2018; 140: 1184
- 7a Beletskaya IP, Alonso F, Tyurin V. Coord. Chem. Rev. 2019; 385: 137
- 7b Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
- 7c Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
- 9a Dorn SK, Brown MK. ACS Catal. 2022; 12: 2058
- 9b Liu Z, Gao Y, Zeng T, Engle KM. Isr. J. Chem. 2020; 60: 219
- 10 Sanzone JR, Hu CT, Woerpel KA. J. Am. Chem. Soc. 2017; 139: 8404
- 11a Averdunk A, Hasenbeck M, Müller T, Becker J, Gellrich U. Chem. Eur. J. 2022; 28: e202200470
- 11b Cheng Y, Mück-Lichtenfeld C, Studer A. J. Am. Chem. Soc. 2018; 140: 6221
- 12a Bubnov YN, Kuznetsov NY, Pastukhov FV, Kublitsky VV. Eur. J. Org. Chem. 2005; 4633
- 12b Pastukhov FV, Yampolsky IV, Bubnov YN. J. Organomet. Chem. 2002; 657: 123
- 12c Frantz DE, Singleton DA. Org. Lett. 1999; 1: 485
- 12d Singleton DA, Waller SC, Zhang Z, Frantz DE, Leung S.-W. J. Am. Chem. Soc. 1996; 118: 9986
- 13a Valencia I, García-García P, Sucunza D, Mendicuti F, Vaquero JJ. J. Org. Chem. 2021; 86: 16259
- 13b Abengózar A, Valencia I, Otárola GG, Sucunza D, García-García P, Pérez-Redondo A, Mendicuti F, Vaquero JJ. Chem. Commun. 2020; 56: 3669
- 13c Abengózar A, Sucunza D, García-García P, Vaquero JJ. Beilstein J. Org. Chem. 2019; 15: 1257
- 13d Abengózar A, Sucunza D, García-García P, Sampedro D, Pérez-Redondo A, Vaquero JJ. J. Org. Chem. 2019; 84: 7113
- 13e Abengózar A, García-García P, Sucunza D, Sampedro D, Pérez-Redondo A, Vaquero JJ. Org. Lett. 2019; 21: 2550
- 13f Abengózar A, Fernández-González MA, Sucunza D, Frutos LM, Salgado A, García-García P, Vaquero JJ. Org. Lett. 2018; 20: 4902
- 13g Abengózar A, García-García P, Sucunza D, Pérez-Redondo A, Vaquero JJ. Chem. Commun. 2018; 54: 2467
- 13h Abengózar A, García-García P, Sucunza D, Frutos LM, Castaño O, Sampedro D, Pérez-Redondo A, Vaquero JJ. Org. Lett. 2017; 19: 3458
- 14 CCDC 2180488 and 2180489 contain the supplementary crystallographic data for compounds 1a and 2, respectively. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 15a Hejda M, Lyčka A, Jambor R, Růžička A, Dostál L. Dalton Trans. 2013; 42: 6417
- 15b Hejda M, Lyčka A, Jambor R, Růžička A, Dostál L. Dalton Trans. 2014; 43: 12678
- 15c Morgan MM, Nazari M, Pickl T, Rautiainen JM, Tuononen HM, Piers WE, Welch GC, Gelfand BS. Chem. Commun. 2019; 55: 11095
- 15d Iqbal SA, Yuan K, Cid J, Pahl J, Ingleson MJ. Org. Biomol. Chem. 2021; 19: 2949
- 16 Xiao J, Huang Y, Song Z, Feng W. RSC Adv. 2015; 5: 99095
- 17 Thorsett ED, Stermitz FR. J. Heterocycl. Chem. 1973; 10: 243
- 18 Liu Z, Ishibashi JS. A, Darrigan C, Dargelos A, Chrostowska A, Li B, Vasiliu M, Dixon DA, Liu S.-Y. J. Am. Chem. Soc. 2017; 139: 6082
- 19a Yusuf M, Liu K, Guo F, Lalancette RA, Jäkle F. Dalton Trans. 2016; 45: 4580
- 19b Matsuo K, Yasuda T. Chem. Commun. 2017; 53: 8723
- 19c Vanga M, Sahoo A, Lalancette RA, Jäkle F. Angew. Chem. Int. Ed. 2022; 61: e202113075
- 20a Grandl M, Kaese T, Krautsieder A, Sun Y, Pammer F. Chem. Eur. J. 2016; 22: 14373
- 20b Grandl M, Rudolf B, Sun Y, Bechtel DF, Pierik AJ, Pammer F. Organometallics 2017; 36: 2527
- 20c Schepper JD. W, Orthaber A, Pammer F. J. Org. Chem. 2021; 86: 14767
- 21 Yang K, Song Q. Acc. Chem. Res. 2021; 54: 2298
- 22 Lu G, Franzén R, Zhang Q, Xu Y. Tetrahedron Lett. 2005; 46: 4255
- 23 Molander GA, Sandrock DL. J. Am. Chem. Soc. 2008; 130: 15792
- 24 Chen W, Liu Y, Chen Z. Eur. J. Org. Chem. 2005; 1665
- 25 Wolfe JP, Singer RA, Yang BH, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 9550
- 26 Bolliger JL, Frech CM. Adv. Synth. Catal. 2010; 352: 1075
- 27 Liu W, Cao H, Lei A. Angew. Chem. Int. Ed. 2010; 49: 2004
- 28 Wang Y.-H, Guo X.-Q, Zhu X.-H, Zhong R, Cai L.-H, Hou X.-F. Chem. Commun. 2012; 48: 10437
- 29 Iranpoor N, Firouzabadi H, Khalili D, Motevalli S. J. Org. Chem. 2008; 73: 4882