Subscribe to RSS
DOI: 10.1055/a-1979-9153
Elastografie von Schilddrüsenknoten
Elastography in thyroid nodulesZusammenfassung
Hintergrund Die Elastografie ist eine bildgebende Methode, um die Elastizität von Gewebe zu untersuchen. Inzwischen wurden verschiedene Elastografie-Verfahren entwickelt, die nach der Art des angewandten Stimulus unterteilt werden. Prinzipiell ist zwischen der Strain-Elastografie (SE) und Scherwellen-Elastografie (SWE) zu unterscheiden. Beide Methoden bieten neben der konventionellen B-Mode-Sonografie eine weitere Möglichkeit zur Beurteilung von Schilddrüsenerkrankungen.
Ziel der Arbeit Es soll ein Überblick über die Elastografie-Verfahren einschließlich der physikalischen Grundlagen vermittelt werden sowie ihre Bedeutung im Abklärungsalgorithmus von Schilddrüsenknoten.
Material und Methoden Internationale Leitlinien sowie aktuelle Arbeiten zur Elastografie wurden selektiv recherchiert.
Ergebnisse Die Elastografie liefert zusätzliche Informationen gegenüber der konventionellen B-Mode-Sonografie. Der wesentliche physikalische Mechanismus, dem der Gewebekontrast in allen Elastogrammen zugrunde liegt, ist die Änderung der Schersteifigkeit. Neben der qualitativen Erfassung der Elastizität in der SE ist mit der SWE eine Quantifizierung möglich. In der internationalen Literatur wurde die Elastografie als einzelne Methode oder im Vergleich bzw. in Kombination zur konventionellen B-Mode-Sonografie und insbesondere mit der Standardisierung mittels eines Risikostratifizierungssystems (RSS, TIRADS) analysiert. Die Ergebnisse zeigten sich durchaus kontrovers. Bei Knoten mit unklaren Befunden der Feinnadelbiopsie (Bethesda III/IV) führte die Kombination aus morphologischen Kriterien und Elastografie zu einer Verbesserung der diagnostischen Genauigkeit. Insbesondere der hohe negative prädiktive Wert weicher Knoten stellt einen relevanten Mehrwert dar. Diese Stärke der Methode kann bei der Abklärung von Knoten mit mittlerem Malignomrisiko oder von unklaren FNB-Ergebnissen eine wichtige Rolle spielen. Die Elastografie wurde bisher nur in das (überwiegend durch das EU-TIRADS abgelöste) French-TIRADS integriert. Obwohl das Verfahren im EU-TIRADS als Komplementärmethode Erwähnung findet, wurde eine Integration nicht beschrieben. Limitationen des Verfahrens sind idealisierte Grundannahmen, Hersteller- und Untersucherabhängigkeit sowie Artefakte.
Schlussfolgerung Die Elastografie kann bei der Beurteilung von Schilddrüsenknoten die standardisierten Diagnostikverfahren sinnvoll ergänzen, insbesondere bei Knoten mit mittlerem Malignomrisiko und unklaren Ergebnissen in der Feinnadelpunktion.
Abstract
Background Elastography is an imaging method to examine the elasticity of tissue. In the meantime, various elastography methods have been developed, which are subdivided according to the type of stimulus applied. In principle, a distinction should be made between strain elastography (SE) and shear wave elastography (SWE). Both methods provide another means of assessing thyroid disease in addition to conventional B-mode sonography.
Objective The aim is to provide an overview of elastography techniques including physical basics and their importance in the clarification algorithm of thyroid nodules.
Materials and methods International guidelines and recent publications on elastography were selectively assessed.
Results Elastography provides additional information compared to conventional B-mode sonography. The change in shear stiffness is the essential physical mechanism for tissue contrast in all elastograms. In addition to the qualitative assessment of elasticity in SE, quantification is possible with SWE. In the international literature, elastography was analyzed as a single method or in comparison or combination with conventional B-mode sonography and especially with standardization using a risk stratification system (RSS, TIRADS). The results are quite controversial. In nodules with unclear findings on fine-needle biopsy (Bethesda III/IV), the combination of morphologic criteria and elastography improved diagnostic accuracy. In particular, the high negative predictive value of soft nodules represents a relevant added value. This strength of the method can play an important role in the clarification of nodules with intermediate malignancy risk or of unclear FNB results.
Elastography has previously only been incorporated into French-TIRADS. Although the procedure is mentioned in the EU-TIRADS as a complementary method, integration has not been described. Limitations of the method are idealized basic assumptions, dependence of manufacturer and examiner, and artifacts.
Conclusion Elastography can be a useful adjunct to standard diagnostic procedures in the evaluation of thyroid nodules, especially in nodules with intermediate risk of malignancy and unclear results on fine needle aspiration.
Schlüsselwörter
Schilddrüsenknoten - Ultraschall - Elastografie - Strain-Elastografie - Scherwellen-Elastografie - TIRADSKeywords
thyroid nodule - ultrasound - elastography - strain elastography - shear wave elastography - TIRADSPublication History
Article published online:
26 May 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Rybinski B, Franco-Barraza J, Cukierman E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genomics 2014; 46: 223-244 DOI: 10.1152/physiolgenomics.00158.2013. (PMID: 24520152)
- 2 Ophir J, Céspedes I, Ponnekanti H. et al. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13: 111-134 DOI: 10.1177/016173469101300201. (PMID: 1858217)
- 3 Sigrist RMS, Liau J, Kaffas AE. et al. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017; 7: 1303-1329 DOI: 10.7150/thno.18650. (PMID: 28435467)
- 4 Friedrich-Rust M, Nierhoff J, Lupsor M. et al. Performance of Acoustic Radiation Force Impulse imaging for the staging of liver fibrosis: a pooled meta-analysis. J Viral Hepat 2012; 19: e212-e219 DOI: 10.1111/j.1365-2893.2011.01537.x. (PMID: 22239521)
- 5 Kanamoto M, Shimada M, Ikegami T. et al. Real time elastography for noninvasive diagnosis of liver fibrosis. J Hepatobiliary Pancreat Surg 2009; 16: 463-467 DOI: 10.1007/s00534-009-0075-9. (PMID: 19322509)
- 6 Aigner F, Pallwein L, Junker D. et al. Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol 2010; 184: 913-917 DOI: 10.1016/j.juro.2010.05.026.
- 7 Thomas A, Kümmel S, Gemeinhardt O. et al. Real-time sonoelastography of the cervix: tissue elasticity of the normal and abnormal cervix. Acad Radiol 2007; 14: 193-200 DOI: 10.1016/j.acra.2006.11.010. (PMID: 17236992)
- 8 Onur MR, Poyraz AK, Bozgeyik Z. et al. Utility of semiquantitative strain elastography for differentiation between benign and malignant solid renal masses. J Ultrasound Med Off J Am Inst Ultrasound Med 2015; 34: 639-647 DOI: 10.7863/ultra.34.4.639.
- 9 Klintworth N, Mantsopoulos K, Zenk J. et al. Sonoelastography of parotid gland tumours: initial experience and identification of characteristic patterns. Eur Radiol 2012; 22: 947-956 DOI: 10.1007/s00330-011-2344-7. (PMID: 22270139)
- 10 Thomas A, Kümmel S, Fritzsche F. et al. Real-time sonoelastography performed in addition to B-mode ultrasound and mammography: improved differentiation of breast lesions?. Acad Radiol 2006; 13: 1496-1504 DOI: 10.1016/j.acra.2006.08.012. (PMID: 17138118)
- 11 Wojcinski S, Farrokh A, Weber S. et al. Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. Ultraschall Med 2010; 31: 484-491 DOI: 10.1055/s-0029-1245282.
- 12 Thomas A, Degenhardt F, Farrokh A. et al. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol 2010; 17: 558-563 DOI: 10.1016/j.acra.2009.12.006. (PMID: 20171905)
- 13 Friedrich-Rust M, Vorlaender C, Dietrich CF. et al. Evaluation of Strain Elastography for Differentiation of Thyroid Nodules: Results of a Prospective DEGUM Multicenter Study. Ultraschall Med 2016; 37: 262-270 DOI: 10.1055/s-0042-104647. (PMID: 27070127)
- 14 Azizi G, Keller JM, Mayo ML. et al. Thyroid Nodules and Shear Wave Elastography: A New Tool in Thyroid Cancer Detection. Ultrasound Med Biol 2015; 41: 2855-2865 DOI: 10.1016/j.ultrasmedbio.2015.06.021. (PMID: 26277203)
- 15 Cantisani V, D’Andrea V, Biancari F. et al. Prospective evaluation of multiparametric ultrasound and quantitative elastosonography in the differential diagnosis of benign and malignant thyroid nodules: preliminary experience. Eur J Radiol 2012; 81: 2678-2683 DOI: 10.1016/j.ejrad.2011.11.056. (PMID: 22357195)
- 16 Çakal E, Şahin M, Ünsal İÖ. et al. Elastography in the differential diagnosis of thyroid nodules. Ultrason Imaging 2015; 37: 251-257 DOI: 10.1177/0161734614547542. (PMID: 25161183)
- 17 Vorländer C, Wolff J, Saalabian S. et al. Real-time ultrasound elastography – a noninvasive diagnostic procedure for evaluating dominant thyroid nodules. Langenbecks Arch Surg 2010; 395: 865-871 DOI: 10.1007/s00423-010-0685-3. (PMID: 20632029)
- 18 Hang J, Li F, Qiao X-H. et al. Combination of Maximum Shear Wave Elasticity Modulus and TIRADS Improves the Diagnostic Specificity in Characterizing Thyroid Nodules: A Retrospective Study. Int J Endocrinol 2018; 2018: 4923050 DOI: 10.1155/2018/4923050. (PMID: 30402095)
- 19 Park AY, Son EJ, Han K. et al. Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. Eur J Radiol 2015; 84: 407-412 DOI: 10.1016/j.ejrad.2014.11.019. (PMID: 25533720)
- 20 Sengul D, Sengul I, Egrioglu E. et al. Can cut-off points of 10 and 15 mm of thyroid nodule predict malignancy on the basis of three diagnostic tools: i) strain elastography, ii) the Bethesda System for Reporting Thyroid Cytology with 27-gauge fine-needle, and iii) histopathology?. J BUON Off J Balk Union Oncol 2020; 25: 1122-1129
- 21 Bamber J, Cosgrove D, Dietrich CF. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall Med 2013; 34: 169-184 DOI: 10.1055/s-0033-1335205. (PMID: 23558397)
- 22 Cosgrove D, Barr R, Bojunga J. et al. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med Biol 2017; 43: 4-26 DOI: 10.1016/j.ultrasmedbio.2016.06.022. (PMID: 27570210)
- 23 Zhao C-K, Xu H-X. Ultrasound elastography of the thyroid: principles and current status. Ultrason Seoul Korea 2019; 38: 106-124 DOI: 10.14366/usg.18037. (PMID: 30690960)
- 24 Rago T, Santini F, Scutari M. et al. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab 2007; 92: 2917-2922 DOI: 10.1210/jc.2007-0641. (PMID: 17535993)
- 25 Asteria C, Giovanardi A, Pizzocaro A. et al. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid Off J Am Thyroid Assoc 2008; 18: 523-531 DOI: 10.1089/thy.2007.0323. (PMID: 18466077)
- 26 Lyshchik A, Higashi T, Asato R. et al. Thyroid gland tumor diagnosis at US elastography. Radiology 2005; 237: 202-211 DOI: 10.1148/radiol.2363041248. (PMID: 16118150)
- 27 Cantisani V, Grazhdani H, Drakonaki E. et al. Strain US Elastography for the Characterization of Thyroid Nodules: Advantages and Limitation. Int J Endocrinol 2015; 2015: 908575 DOI: 10.1155/2015/908575. (PMID: 25954310)
- 28 Swan KZ, Nielsen VE, Bonnema SJ. Evaluation of thyroid nodules by shear wave elastography: a review of current knowledge. J Endocrinol Invest 2021; 44: 2043-2056 DOI: 10.1007/s40618-021-01570-z. (PMID: 33864241)
- 29 Zhao C-K, Chen S-G, Alizad A. et al. Three-Dimensional Shear Wave Elastography for Differentiating Benign From Malignant Thyroid Nodules. J Ultrasound Med Off J Am Inst Ultrasound Med 2018; 37: 1777-1788 DOI: 10.1002/jum.14531.
- 30 Bhatia KSS, Lam ACL, Pang SWA. et al. Feasibility Study of Texture Analysis Using Ultrasound Shear Wave Elastography to Predict Malignancy in Thyroid Nodules. Ultrasound Med Biol 2016; 42: 1671-1680 DOI: 10.1016/j.ultrasmedbio.2016.01.013. (PMID: 27126245)
- 31 Bojunga J, Herrmann E, Meyer G. et al. Real-time elastography for the differentiation of benign and malignant thyroid nodules: a meta-analysis. Thyroid Off J Am Thyroid Assoc 2010; 20: 1145-1150 DOI: 10.1089/thy.2010.0079. (PMID: 20860422)
- 32 Ghajarzadeh M, Sodagari F, Shakiba M. Diagnostic accuracy of sonoelastography in detecting malignant thyroid nodules: a systematic review and meta-analysis. AJR Am J Roentgenol 2014; 202: W379-W389 DOI: 10.2214/AJR.12.9785. (PMID: 24660737)
- 33 Razavi SA, Hadduck TA, Sadigh G. et al. Comparative effectiveness of elastographic and B-mode ultrasound criteria for diagnostic discrimination of thyroid nodules: a meta-analysis. AJR Am J Roentgenol 2013; 200: 1317-1326 DOI: 10.2214/AJR.12.9215. (PMID: 23701071)
- 34 Moon HJ, Sung JM, Kim E-K. et al. Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology 2012; 262: 1002-1013 DOI: 10.1148/radiol.11110839. (PMID: 22357900)
- 35 Azizi G, Keller J, Lewis M. et al. Performance of elastography for the evaluation of thyroid nodules: a prospective study. Thyroid Off J Am Thyroid Assoc 2013; 23: 734-740 DOI: 10.1089/thy.2012.0227. (PMID: 23136893)
- 36 Trimboli P, Guglielmi R, Monti S. et al. Ultrasound Sensitivity for Thyroid Malignancy Is Increased by Real-Time Elastography: A Prospective Multicenter Study. J Clin Endocrinol Metab 2012; 97: 4524-4530 DOI: 10.1210/jc.2012-2951. (PMID: 23066117)
- 37 Ning C-P, Jiang S-Q, Zhang T. et al. The value of strain ratio in differential diagnosis of thyroid solid nodules. Eur J Radiol 2012; 81: 286-291 DOI: 10.1016/j.ejrad.2010.12.010. (PMID: 21237598)
- 38 Magri F, Chytiris S, Capelli V. et al. Comparison of elastographic strain index and thyroid fine-needle aspiration cytology in 631 thyroid nodules. J Clin Endocrinol Metab 2013; 98: 4790-4797 DOI: 10.1210/jc.2013-2672. (PMID: 24064692)
- 39 Ding J, Cheng H, Ning C. et al. Quantitative measurement for thyroid cancer characterization based on elastography. J Ultrasound Med Off J Am Inst Ultrasound Med 2011; 30: 1259-1266 DOI: 10.7863/jum.2011.30.9.1259. (PMID: 21876097)
- 40 Lippolis PV, Tognini S, Materazzi G. et al. Is elastography actually useful in the presurgical selection of thyroid nodules with indeterminate cytology?. J Clin Endocrinol Metab 2011; 96: E1826-1830 DOI: 10.1210/jc.2011-1021.
- 41 Unlütürk U, Erdoğan MF, Demir O. et al. Ultrasound elastography is not superior to grayscale ultrasound in predicting malignancy in thyroid nodules. Thyroid Off J Am Thyroid Assoc 2012; 22: 1031-1038 DOI: 10.1089/thy.2011.0502. (PMID: 22876757)
- 42 Zhan J, Jin J-M, Diao X-H. et al. Acoustic radiation force impulse imaging (ARFI) for differentiation of benign and malignant thyroid nodules – A meta-analysis. Eur J Radiol 2015; 84: 2181-2186 DOI: 10.1016/j.ejrad.2015.07.015. (PMID: 26259701)
- 43 Lin P, Chen M, Liu B. et al. Diagnostic performance of shear wave elastography in the identification of malignant thyroid nodules: a meta-analysis. Eur Radiol 2014; 24: 2729-2738 DOI: 10.1007/s00330-014-3320-9. (PMID: 25113648)
- 44 Liu B-J, Li D-D, Xu H-X. et al. Quantitative Shear Wave Velocity Measurement on Acoustic Radiation Force Impulse Elastography for Differential Diagnosis between Benign and Malignant Thyroid Nodules: A Meta-analysis. Ultrasound Med Biol 2015; 41: 3035-3043 DOI: 10.1016/j.ultrasmedbio.2015.08.003.
- 45 Dong F-J, Li M, Jiao Y. et al. Acoustic Radiation Force Impulse imaging for detecting thyroid nodules: a systematic review and pooled meta-analysis. Med Ultrason 2015; 17: 192-199 DOI: 10.11152/mu.2013.2066.172.hyr. (PMID: 26052570)
- 46 Bhatia KSS, Tong CSL, Cho CCM. et al. Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy. Eur Radiol 2012; 22: 2397-2406 DOI: 10.1007/s00330-012-2495-1. (PMID: 22645042)
- 47 Russ G, Royer B, Bigorgne C. et al. Prospective evaluation of thyroid imaging reporting and data system on 4550 nodules with and without elastography. Eur J Endocrinol 2013; 168: 649-655 DOI: 10.1530/EJE-12-0936.
- 48 Petersen M, Schenke SA, Firla J. et al. Shear Wave Elastography and Thyroid Imaging Reporting and Data System (TIRADS) for the Risk Stratification of Thyroid Nodules-Results of a Prospective Study. Diagn Basel Switz 2022; 12: 109 DOI: 10.3390/diagnostics12010109. (PMID: 35054275)
- 49 Liu Z, Jing H, Han X. et al. Shear wave elastography combined with the thyroid imaging reporting and data system for malignancy risk stratification in thyroid nodules. Oncotarget 2017; 8: 43406-43416 DOI: 10.18632/oncotarget.15018.
- 50 Huang S, Meng N, Pan M. et al. Diagnostic performances of the KWAK-TIRADS classification, elasticity score, and Bethesda System for Reporting Thyroid Cytopathology of TI-RADS category 4 thyroid nodules. Int J Clin Exp Pathol 2020; 13: 1159-1168 (PMID: 32509090)
- 51 Hairu L, Yulan P, Yan W. et al. Elastography for the diagnosis of high-suspicion thyroid nodules based on the 2015 American Thyroid Association guidelines: a multicenter study. BMC Endocr Disord 2020; 20: 43 DOI: 10.1186/s12902-020-0520-y. (PMID: 32245458)
- 52 Zhang W-B, Xu W, Fu W-J. et al. Comparison of ACR TI-RADS, Kwak TI-RADS, ATA guidelines and KTA/KSThR guidelines in combination with SWE in the diagnosis of thyroid nodules. Clin Hemorheol Microcirc 2021; 78: 163-174 DOI: 10.3233/CH-201021.
- 53 Gao X-Q, Ma Y, Peng X-S. et al. Diagnostic performance of C-TIRADS combined with SWE for the diagnosis of thyroid nodules. Front Endocrinol 2022; 13: 939303 DOI: 10.3389/fendo.2022.939303.
- 54 Schenke S, Zimny M. Combination of Sonoelastography and TIRADS for the Diagnostic Assessment of Thyroid Nodules. Ultrasound Med Biol 2018; 44: 575-583 DOI: 10.1016/j.ultrasmedbio.2017.11.017. (PMID: 29305124)
- 55 Cantisani V, David E, Grazhdani H. et al. Prospective Evaluation of Semiquantitative Strain Ratio and Quantitative 2D Ultrasound Shear Wave Elastography (SWE) in Association with TIRADS Classification for Thyroid Nodule Characterization. Ultraschall Med 2019; 40: 495-503 DOI: 10.1055/a-0853-1821.
- 56 Russ G, Bonnema SJ, Erdogan MF. et al. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017; 6: 225-237 DOI: 10.1159/000478927. (PMID: 29167761)
- 57 Gay S, Schiaffino S, Santamorena G. et al. Role of Strain Elastography and Shear-Wave Elastography in a Multiparametric Clinical Approach to Indeterminate Cytology Thyroid Nodules. Med Sci Monit Int Med J Exp Clin Res 2018; 24: 6273-6279 DOI: 10.12659/MSM.909870. (PMID: 30194820)
- 58 Rago T, Scutari M, Santini F. et al. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J Clin Endocrinol Metab 2010; 95: 5274-5280 DOI: 10.1210/jc.2010-0901. (PMID: 20810572)
- 59 Cantisani V, Ulisse S, Guaitoli E. et al. Q-elastography in the presurgical diagnosis of thyroid nodules with indeterminate cytology. PloS One 2012; 7: e50725 DOI: 10.1371/journal.pone.0050725.
- 60 Bardet S, Ciappuccini R, Pellot-Barakat C. et al. Shear Wave Elastography in Thyroid Nodules with Indeterminate Cytology: Results of a Prospective Bicentric Study. Thyroid Off J Am Thyroid Assoc 2017; 27: 1441-1449 DOI: 10.1089/thy.2017.0293.
- 61 Azizi G, Keller JM, Mayo ML. et al. Shear wave elastography and AfirmaTM gene expression classifier in thyroid nodules with indeterminate cytology: a comparison study. Endocrine 2018; 59: 573-584 DOI: 10.1007/s12020-017-1509-9.
- 62 Trimboli P, Treglia G, Sadeghi R. et al. Reliability of real-time elastography to diagnose thyroid nodules previously read at FNAC as indeterminate: a meta-analysis. Endocrine 2015; 50: 335-343 DOI: 10.1007/s12020-014-0510-9. (PMID: 25534701)
- 63 Qiu Y, Xing Z, Liu J. et al. Diagnostic reliability of elastography in thyroid nodules reported as indeterminate at prior fine-needle aspiration cytology (FNAC): a systematic review and Bayesian meta-analysis. Eur Radiol 2020; 30: 6624-6634 DOI: 10.1007/s00330-020-07023-0. (PMID: 32990793)
- 64 Dobruch-Sobczak KS, Krauze A, Migda B. et al. Integration of Sonoelastography Into the TIRADS Lexicon Could Influence the Classification. Front Endocrinol 2019; 10: 127 DOI: 10.3389/fendo.2019.00127.
- 65 Zhang Y, Huang Q-Y, Wu C-J. et al. Predicting malignancy in thyroid nodules based on conventional ultrasound and elastography: the value of predictive models in a multi-center study. Endocrine 2023; 80: 111-123 DOI: 10.1007/s12020-022-03271-w. (PMID: 36495391)
- 66 Yang J-R, Song Y, Xue S-S. et al. Suggested amendment of TI-RADS classification of thyroid nodules by shear wave elastography. Acta Radiol Stockh Swed 1987 2020; 61: 1026-1033 DOI: 10.1177/0284185119889567. (PMID: 31825762)
- 67 Bora Makal G, Aslan A. The Diagnostic Value of the American College of Radiology Thyroid Imaging Reporting and Data System Classification and Shear-Wave Elastography for the Differentiation of Thyroid Nodules. Ultrasound Med Biol 2021; 47: 1227-1234 DOI: 10.1016/j.ultrasmedbio.2021.01.023. (PMID: 33589354)
- 68 Pei S, Zhang B, Cong S. et al. Ultrasound Real-Time Tissue Elastography Improves the Diagnostic Performance of the ACR Thyroid Imaging Reporting and Data System in Differentiating Malignant from Benign Thyroid Nodules: A Summary of 1525 Thyroid Nodules. Int J Endocrinol 2020; 2020: 1749351 DOI: 10.1155/2020/1749351.
- 69 Chambara N, Lo X, Chow TCM. et al. Combined Shear Wave Elastography and EU TIRADS in Differentiating Malignant and Benign Thyroid Nodules. Cancers 2022; 14: 5521 DOI: 10.3390/cancers14225521. (PMID: 36428614)
- 70 Celletti I, Fresilli D, De Vito C. et al. TIRADS, SRE and SWE in INDETERMINATE thyroid nodule characterization: Which has better diagnostic performance?. Radiol Med (Torino) 2021; 126: 1189-1200 DOI: 10.1007/s11547-021-01349-5.
- 71 Chen L, Shi Y-X, Liu Y-C. et al. The values of shear wave elastography in avoiding repeat fine-needle aspiration for thyroid nodules with nondiagnostic and undetermined cytology. Clin Endocrinol (Oxf) 2019; 91: 201-208 DOI: 10.1111/cen.13992.
- 72 Zhang W-B, Li J-J, Chen X-Y. et al. SWE combined with ACR TI-RADS categories for malignancy risk stratification of thyroid nodules with indeterminate FNA cytology. Clin Hemorheol Microcirc 2020; 76: 381-390 DOI: 10.3233/CH-200893.
- 73 Dighe M, Hippe DS, Thiel J. Artifacts in Shear Wave Elastography Images of Thyroid Nodules. Ultrasound Med Biol 2018; 44: 1170-1176 DOI: 10.1016/j.ultrasmedbio.2018.02.007. (PMID: 29573887)
- 74 Wells PNT, Liang H-D. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 2011; 8: 1521-1549 DOI: 10.1098/rsif.2011.0054. (PMID: 21680780)