Synthesis 2023; 55(06): 857-867
DOI: 10.1055/a-1983-5059
short review

Transformation of Tetrafluoroethylene Using Transition-Metal Complexes

Ryohei Doi
,
Yuyang Zhou
,
Sensuke Ogoshi


Abstract

Tetrafluoroethylene (TFE) is an industrial organofluorine feedstock that is used predominantly to fabricate fluorinated polymers. TFE exhibits excellent potential as a building block for synthesizing organofluorine compounds, which are increasingly gaining attention as functional materials, pharmaceuticals, and agrochemicals. In particular, the use of transition-metal complexes in the transformation of TFE is of great interest, considering their widespread use in syntheses of organofluorine compounds over the last few decades. This review highlights studies on the transformation of TFE into organofluorine compounds using transition-metal complexes, except for polymerizations. Our review covers cross-coupling reactions via C–F bond cleavage, fluoroalkylation reactions, multicomponent couplings, and olefin metathesis.

1 Introduction

2 Palladium Complexes

3 Copper Complexes

4 Nickel Complexes

5 Ruthenium Complexes

6 Rhodium Complexes

7 Summary and Perspective



Publication History

Received: 13 October 2022

Accepted after revision: 15 November 2022

Accepted Manuscript online:
21 November 2022

Article published online:
20 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Babenko YI, Lisochkin YA, Poznyak VI. Combust., Explos. Shock Waves (Engl. Transl.) 1993; 29: 603
  • 2 Reza A, Christiansen E. Process Saf. Prog. 2007; 26: 77
  • 3 Siegemund G, Schwertfeger W, Feiring A, Smart B, Behr F, Vogel H, McKusick B, Kirsch P. In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2016: 1
  • 4 The reactions developed by the Ogoshi group described herein have been carried out using TFE from pressurized cylinders containing no stabilizer (Daikin Industries).
  • 5 Hunadi RJ, Baum K. Synthesis 1982; 454
  • 6 Li L, Ni C, Xie Q, Hu M, Wang F, Hu J. Angew. Chem. Int. Ed. 2017; 56: 9971
  • 7 Hercules DA, Parrish CA, Sayler TS, Tice KT, Williams SM, Lowery LE, Brady ME, Coward RB, Murphy JA, Hey TA, Scavuzzo AR, Rummler LM, Burns EG, Matsnev AV, Fernandez RE, McMillen CD, Thrasher JS. J. Fluorine Chem. 2017; 196: 107
  • 8 A related review covering until 2016: Ohashi M, Ogoshi S. J. Synth. Org. Chem. Jpn. 2016; 74: 1047
  • 9 Václavík J, Klimánková I, Budinská A, Beier P. Eur. J. Org. Chem. 2018; 2018: 3554
  • 10 Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
  • 11 Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 12 Littke AF, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
  • 13 Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
  • 14 Nikitina TS. Russ. Chem. Rev. 1990; 59: 575
  • 15 Souzy R, Ameduri B, Boutevin B. Prog. Polym. Sci. 2004; 29: 75
  • 16 Dixon S. J. Org. Chem. 1956; 21: 400
  • 17 Ohashi M, Kambara T, Hatanaka T, Saijo H, Doi R, Ogoshi S. J. Am. Chem. Soc. 2011; 133: 3256
  • 18 Hacker MJ, Littlecott GW, Kemmitt RD. W. J. Organomet. Chem. 1973; 47: 189
  • 19 Ohashi M, Shibata M, Saijo H, Kambara T, Ogoshi S. Organometallics 2013; 32: 3631
  • 20 Ohashi M, Kamura R, Doi R, Ogoshi S. Chem. Lett. 2013; 42: 933
  • 21 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 22 Saijo H, Sakaguchi H, Ohashi M, Ogoshi S. Organometallics 2014; 33: 3669
  • 23 McLoughlin VC. R, Thrower J. Tetrahedron 1969; 25: 5921
  • 24 Saijo H, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2014; 136: 15158
  • 25 Kikushima K, Sakaguchi H, Saijo H, Ohashi M, Ogoshi S. Chem. Lett. 2015; 44: 1019
  • 26 Ohashi M, Adachi T, Ishida N, Kikushima K, Ogoshi S. Angew. Chem. Int. Ed. 2017; 56: 11911
  • 27 Ishida N, Adachi T, Iwamoto H, Ohashi M, Ogoshi S. Chem. Lett. 2021; 50: 442
  • 28 Ohashi M, Ishida N, Ando K, Hashimoto Y, Shigaki A, Kikushima K, Ogoshi S. Chem. Eur. J. 2018; 24: 9794
  • 29 Graham DP. J. Org. Chem. 1966; 31: 955
  • 30 Haszeldine RN, Hewitson B, Tipping AE, Martin D, Weise A, Niclas H.-J. J. Chem. Soc., Perkin Trans. 1 1976; 1178
  • 31 Ishida N, Iwamoto H, Sunagawa DE, Ohashi M, Ogoshi S. Synthesis 2021; 53: 3137
  • 32 Sakaguchi H, Uetake Y, Ohashi M, Niwa T, Ogoshi S, Hosoya T. J. Am. Chem. Soc. 2017; 139: 12855
  • 33 Sakaguchi H, Ohashi M, Ogoshi S. Angew. Chem. Int. Ed. 2018; 57: 328
  • 34 Kleeberg C, Cheung MS, Lin Z, Marder TB. J. Am. Chem. Soc. 2011; 133: 19060
  • 35 Andrella NO, Xu N, Gabidullin BM, Ehm C, Baker RT. J. Am. Chem. Soc. 2019; 141: 11506
  • 36 Cundy CS, Green M, Stone FG. A. J. Chem. Soc. A 1970; 1647
  • 37 Yu S, Dudkina Y, Wang H, Kholin KV, Kadirov MK, Budnikova YH, Vicic DA. Dalton Trans. 2015; 44: 19443
  • 38 Bour JR, Ferguson DM, McClain EJ, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2019; 141: 8914
  • 39 Baker RT, Beatty RP, Farnham WB, Wallace RL. Jr. US 5 670 679, 1997
  • 40 Schröder W, Bonrath W, Pörschke KR. J. Organomet. Chem. 1991; 408: C25
  • 41 Bennett MA, Glewis M, Hockless DC. R, Wenger E. J. Chem. Soc., Dalton Trans. 1997; 3105
  • 42 Bennett MA, Hockless DC. R, Wenger E. Organometallics 1995; 14: 2091
  • 43 Ogoshi S. Bull. Chem. Soc. Jpn. 2017; 90: 1401
  • 44 Hoshimoto Y, Ohashi M, Ogoshi S. Acc. Chem. Res. 2015; 48: 1746
  • 45 Ohashi M, Kawashima T, Taniguchi T, Kikushima K, Ogoshi S. Organometallics 2015; 34: 1604
  • 46 Ohashi M, Shirataki H, Kikushima K, Ogoshi S. J. Am. Chem. Soc. 2015; 137: 6496
  • 47 Hoshimoto Y, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2011; 133: 4668
  • 48 Ogoshi S, Hoshimoto Y, Ohashi M. Chem. Commun. 2010; 46: 3354
  • 49 Shirataki H, Ohashi M, Ogoshi S. Eur. J. Org. Chem. 2019; 2019: 1883
  • 50 Shirataki H, Ono T, Ohashi M, Ogoshi S. Org. Lett. 2019; 21: 851
  • 51 Kawashima T, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2017; 139: 17795
  • 52 Ohashi M, Ueda Y, Ogoshi S. Angew. Chem. Int. Ed. 2017; 56: 2435
  • 53 Kawashima T, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2018; 140: 17423
  • 54 Harrison DJ, Daniels AL, Guan J, Gabidullin BM, Hall MB, Baker RT. Angew. Chem. Int. Ed. 2018; 57: 5772
  • 55 Trnka TM, Day MW, Grubbs RH. Angew. Chem. Int. Ed. 2001; 40: 3441
  • 56 Takahira Y, Morizawa Y. J. Am. Chem. Soc. 2015; 137: 7031
  • 57 Mori K, Akiyama M, Inada K, Imamura Y, Ishibashi Y, Takahira Y, Nozaki K, Okazoe T. J. Am. Chem. Soc. 2021; 143: 20980
  • 58 Mukhedkar AJ, Mukhedkar VA, Green M, Stone FG. A. J. Chem. Soc. A 1970; 3166
  • 59 Hayashi S, Murayama T, Kusumoto S, Nozaki K. Angew. Chem. Int. Ed. 2022; 61: e202207760
  • 60 Paonessa RS, Trogler WC. J. Am. Chem. Soc. 1982; 104: 1138
  • 61 Burrell AK, Roper WR. Organometallics 1990; 9: 1905
  • 62 Lee GM, Harrison DJ, Korobkov I, Baker RT. Chem. Commun. 2014; 50: 1128
  • 63 Ghostine K, Gabidullin BM, Baker RT. Polyhedron 2020; 185: 114587