Synthesis 2023; 55(07): 1042-1052 DOI: 10.1055/a-2000-8183
Earth-Abundant Transition Metal Catalyzed Asymmetric Hydrogenation of Minimally Functionalized Alkenes
a
Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
,
a
Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
b
College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. of China
› Author Affiliations This work was financially supported by National Key Research and Development Program of China (2021YFF0701600 and 2021YFA1500200), National Natural Science Foundation of China (NSFC) (22271249), the Fundamental Research Funds for the Central Universities (226-2022-00224), China Postdoctoral Science Foundation (2022M712739), and the Center of Chemistry for Frontier Technologies.
Abstract
Transition-metal-catalyzed asymmetric hydrogenation (AH) is a growing field and a fundamental tool for the construction of chiral compounds. The use of earth-abundant transition metals in AH reactions remains generally limited but has received increased attention in recent years due to cost, sustainability, and environmental concerns. Here, we will summarize progress in first row transition metal catalyzed AH of minimally functionalized alkenes, including scope, mechanism, and challenges in this field.
1 Introduction
2 Ti-Catalyzed AH of Minimally Functionalized Alkenes
3 Zr-Catalyzed AH of Minimally Functionalized Alkenes
4 Co-Catalyzed AH of Minimally Functionalized Alkenes
5 Fe-Catalyzed AH of Minimally Functionalized Alkenes
6 Summary and Outlook
Key words
asymmetric hydrogenation -
minimally functionalized alkenes -
earth-abundant transition metals -
catalysis -
ligand design
Publication History
Received: 17 November 2022
Accepted after revision: 19 December 2022
Accepted Manuscript online: 19 December 2022
Article published online: 18 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Johnson NB,
Lennon IC,
Moran PH,
Ramsden JA.
Acc. Chem. Res. 2007; 40: 1291
1b
Shultz CS,
Krska SW.
Acc. Chem. Res. 2007; 40: 1320
1c
Etayoa P,
Vidal-Ferran A.
Chem. Soc. Rev. 2013; 42: 728
2
Knowles WS,
Sabacky MJ.
Chem. Commun. 1968; 1445
3
Horner L,
Siegel H,
Büthe H.
Angew. Chem., Int. Ed. Engl. 1968; 7: 941
4
Dang TP,
Kagan HB.
J. Chem. Soc. D. 1971; 481
5
Vineyard BD,
Knowles WS,
Sabacky MJ,
Bachman GL,
Weinkauff OJ.
J. Am. Chem. Soc. 1977; 99: 5946
6a
Noyori R.
Chem. Soc. Rev. 1989; 18: 187
6b
Noyori R,
Takaya H.
Acc. Chem. Res. 1990; 23: 345
6c
Noyori R.
Science 1990; 248: 1194
7a
Noyori R.
Angew. Chem. Int. Ed. 2002; 41: 2008
7b
Knowles WS.
Angew. Chem. Int. Ed. 2002; 41: 1998
8a
Tang W,
Zhang X.
Chem. Rev. 2003; 103: 3029
8b
Zhao D,
Candish L,
Paul D,
Glorius F.
ACS Catal. 2016; 6: 5978
8c
Zhang Z,
Butt NA,
Zhang W.
Chem. Rev. 2016; 116: 14769
8d
Zhou Y.-G.
Acc. Chem. Res. 2007; 40: 1357
8e
Zhu S.-F,
Zhou Q.-L.
Acc. Chem. Res. 2017; 50: 988
8f
Charvillat T,
Bernardelli P,
Daumas M,
Pannecoucke X,
Ferey V,
Besset T.
Chem. Soc. Rev. 2021; 50: 8178
9a
Crabtree RH,
Felkin H,
Morris GE.
J. Organomet. Chem. 1977; 141: 205
9b
Crabtree RH,
Gautier A,
Giordano G,
Khan T.
J. Organomet. Chem. 1977; 141: 113
10a
Schnider P,
Koch G,
Prétôt R,
Wang G,
Bohnen FM,
Krüger C,
Pfaltz A.
Chem. Eur. J. 1997; 3: 887
10b
Lightfoot A,
Schnider P,
Pfaltz A.
Angew. Chem. Int. Ed. 1998; 37: 2897
11
Helmchen G,
Pfaltz A.
Acc. Chem. Res. 2000; 33: 336
12a
Roseblade SJ,
Pfaltz A.
Acc. Chem. Res. 2007; 40: 1402
12b
Cui X,
Burgess K.
Chem. Rev. 2005; 105: 3272
12c
Verendel JJ,
Pamies O,
Diéguez M,
Andersson PG.
Chem. Rev. 2014; 114: 2130
12d
Biosca M,
Magre M,
Pamies O,
Diéguez M.
ACS Catal. 2018; 8: 10316
12e
Bunlaksananusorn T,
Polborn K,
Knochel P.
Angew. Chem. Int. Ed. 2003; 42: 3941
12f
Bell S,
Wüstenberg B,
Kaiser S,
Menges F,
Netscher T,
Pfaltz A.
Science 2006; 311: 642
12g
Biosca M,
Salomo E,
Cruz-Sanchez P,
Riera A,
Verdaguer X,
Pamies O,
Diéguez M.
Org. Lett. 2019; 21: 807
12h
Wassenaar J,
Detz RJ,
Boer SY,
Lutz M,
Maarseveen JH,
Hiemstra H,
Reek JN. H.
J. Org. Chem. 2015; 80: 3634
13
Powell MT,
Hou D.-R,
Perry MC,
Cui X,
Burgess K.
J. Am. Chem. Soc. 2001; 123: 8878
14
Drury WJ,
Zimmermann N,
Keenan M,
Hayashi M,
Kaiser S,
Goddard R,
Pfaltz A.
Angew. Chem. Int. Ed. 2004; 43: 70
15
Schumacher A,
Bernasconi M,
Pfaltz A.
Angew. Chem. Int. Ed. 2013; 52: 7422
16
Liu Q.-B,
Zhou Y.-G.
Tetrahedron Lett. 2007; 48: 2101
17a
Källström K,
Hedberg C,
Brandt P,
Bayer A,
Andersson PG.
J. Am. Chem. Soc. 2004; 126: 14308
17b
Hedberg C,
Källström K,
Brandt P,
Hansen LK,
Andersson PG.
J. Am. Chem. Soc. 2006; 128: 2995
18a
Mazuela J,
Norrby P.-O,
Andersson PG,
Pàmies O,
Diéguez M.
J. Am. Chem. Soc. 2011; 133: 13634
18b
Mazuela J,
Pàmies O,
Diéguez M.
ChemCatChem 2013; 5: 2410
19
Busacca CA,
Qu B,
Grět N,
Fandrick KR,
Saha AK,
Marsini M,
Reeves D,
Haddad N,
Eriksson M,
Wu J.-P,
Grinberg N,
Lee H,
Li Z,
Lu B,
Chen D,
Hong Y,
Ma S,
Senanayake CH.
Adv. Synth. Catal. 2013; 355: 1455
20a
Chatterjee I,
Qu Z.-W,
Grimme S,
Oestreich M.
Angew. Chem. Int. Ed. 2015; 54: 12158
20b
Keess S,
Oestreich M.
Chem. Sci. 2017; 8: 4688
20c
Wang D,
Astruc D.
Chem. Rev. 2015; 115: 6621
21a
Pálvölgyi ÁM,
Scharinger F,
Schnürch M,
Bica-Schröder K.
Eur. J. Org. Chem. 2021; 5367
21b
Noyori R,
Hashiguchi S.
Acc. Chem. Res. 1997; 30: 97
21c
Li Y.-Y,
Yu S.-L,
Shen W.-Y,
Gao J.-X.
Acc. Chem. Res. 2015; 48: 2587
21d
Zassinovich G,
Mestroni G,
Gladiali S.
Chem. Rev. 1992; 92: 1051
21e
Palmer MJ,
Wills M.
Tetrahedron: Asymmetry 1999; 10: 2045
21f
Gladiali S,
Alberico E.
Chem. Soc. Rev. 2006; 35: 226
21g
Yang JW,
Fonseca MT. H,
List B.
Angew. Chem. Int. Ed. 2004; 43: 6660
21h
Xu H,
Yang P,
Chuanprasit P,
Hirao H,
Zhou J.
Angew. Chem. Int. Ed. 2015; 54: 5112
22a
Wang Y,
Huang Z,
Liu G,
Huang Z.
Acc. Chem. Res. 2022; 55: 2148
22b
Wang Z,
Ai F,
Wang Z,
Zhao W,
Zhu G,
Lin Z,
Sun J.
J. Am. Chem. Soc. 2015; 137: 383
23
Margarita C,
Andersson PG.
J. Am. Chem. Soc. 2017; 139: 1346
24a
Zhang Z,
Butt NA,
Zhou M,
Liu D,
Zhang W.
Chin. J. Chem. 2018; 36: 443
24b
Wen J,
Wang F,
Zhang X.
Chem. Soc. Rev. 2021; 50: 3211
24c
Ai W,
Zhong R,
Liu X,
Liu Q.
Chem. Rev. 2019; 119: 2876
24d
Le Bailly BA. F,
Thomas SP.
RSC Adv. 2011; 1: 1435
24e
Gieshoff TN,
von Wangelin AJ.
C=C Hydrogenations with Iron Group Metal Catalysts
. In
Non-Noble Metal Catalysis : Molecular Approaches and Reactions
.
Gebbink RJ. M. K,
Moret M.-E.
Wiley-VCH; Weinheim: 2018: 97
24f
Teichert JF.
Homogeneous Hydrogenation with Non-Precious Catalysts. Wiley-VCH; Weinheim: 2019
25a
Marks TJ.
Acc. Chem. Res. 1992; 25: 57
25b
Kesti MR,
Coates GW,
Waymouth RM.
J. Am. Chem. Soc. 1992; 114: 9679
25c
Pino P,
Cioni P,
Wei J.
J. Am. Chem. Soc. 1987; 109: 6189
26
Cesarotti E,
Ugo R,
Kagan HB.
Angew. Chem., Int. Ed. Engl. 1979; 18: 779
27
Halterman RL,
Vollhardt KP. C,
Welker ME,
Blaeser D,
Boese R.
J. Am. Chem. Soc. 1987; 109: 8105
28
Wild FR. W. P,
Zsolnai L,
Huttner G,
Brintzinger HH.
J. Organomet. Chem. 1982; 232: 233
29
Broene RD,
Buchwald SL.
J. Am. Chem. Soc. 1993; 115: 12569
30
Waymouth R,
Pino P.
J. Am. Chem. Soc. 1990; 112: 4911
31
Troutman MV,
Appella DH,
Buchwald SL.
J. Am. Chem. Soc. 1999; 121: 4916
32
It’s Elemental: The Periodic Table of Elements , Jefferson Lab Resources, Thomas Jefferson National Accelerator Facility - Office of Science Education (accessed January 2, 2023): https://education.jlab.org/itselemental/
33
Ohgo Y,
Takeuchi S,
Natori Y,
Yoshimura J.
Bull. Chem. Soc. Jpn. 1981; 54: 2124
34
Yoshinaga K,
Kito T,
Oka H,
Sakaki S,
Ohkubo K.
J. Catal. 1984; 87: 517
35
Leutenegger U,
Madin A,
Pfaltz A.
Angew. Chem., Int. Ed. Engl. 1989; 28: 60
36
Corma A,
Iglesias M,
del Pino C,
Sanchez F.
J. Organomet. Chem. 1992; 431: 233
37a
Friedfeld MR,
Shevlin M,
Hoyt JM,
Krska SW,
Tudge MT,
Chirik PJ.
Science 2013; 342: 1076
37b
Friedfeld MR,
Zhong H,
Ruck RT,
Shevlin M,
Chirik PJ.
Science 2018; 360: 888
37c
Du X,
Xiao Y,
Yang Y,
Duan Y.-N,
Li F,
Hu Q,
Chung LW,
Chen G.-Q,
Zhang X.
Angew. Chem. Int. Ed. 2021; 60: 11384
37d
Du X,
Xiao Y,
Huang J.-M,
Zhang Y,
Duan Y.-N,
Wang H,
Shi C,
Chen G.-Q,
Zhang X.
Nat. Commun. 2020; 11: 3239
38
Monfette S,
Turner ZR,
Semproni SP,
Chirik PJ.
J. Am. Chem. Soc. 2012; 134: 4561
39
Friedfeld MR,
Shevlin M,
Margulieux GW,
Campeau L.-C,
Chirik PJ.
J. Am. Chem. Soc. 2016; 138: 3314
40
Hopmann KH.
Organometallics 2013; 32: 6388
41
Chen J,
Chen C,
Ji C,
Lu Z.
Org. Lett. 2016; 18: 1594
42
Mazuela J,
Pàmies O,
Diéguez M.
Eur. J. Inorg. Chem. 2013; 2139
43
Massaro L,
Zheng J,
Margarita C,
Andersson PG.
Chem. Soc. Rev. 2020; 49: 2504
44
Lu P,
Wang H,
Mao Y,
Hong X,
Lu Z.
J. Am. Chem. Soc. 2022; 144: 17359
45 The DFT calculations of mechanism is being prepared for submission.
46
Gopalaiah K.
Chem. Rev. 2013; 113: 3248
47
Frankel EN,
Emken EA,
Peters HM,
Davison VL,
Butterfield RO.
J. Org. Chem. 1964; 29: 3292
48a
Bart SC,
Lobkovsky E,
Chirik PJ.
J. Am. Chem. Soc. 2004; 126: 13794
48b
Chirik PJ.
Acc. Chem. Res. 2015; 48: 1687
48c
Guo N,
Hu M.-Y,
Feng Y,
Zhu S.-F.
Org. Chem. Front. 2015; 2: 692
48d
Frank DJ,
Guiet L,
Käslin A,
Murphy E,
Thomas SP.
RSC Adv. 2013; 3: 25698
48e
Daida EJ,
Peters JC.
Inorg. Chem. 2004; 43: 7474
48f
Sunada Y,
Ogushi H,
Yamamoto T,
Uto S,
Sawano M,
Tahara A,
Tanaka H,
Shiota Y,
Yoshizawa K,
Nagashima H.
J. Am. Chem. Soc. 2018; 140: 4119
48g
Docherty JH,
Peng J,
Dominey AP,
Thomas SP.
Nat. Chem. 2017; 9: 595
49
Hoyt JM,
Shevlin M,
Margulieux GW,
Krska SW,
Tudge MT,
Chirik PJ.
Organometallics 2014; 33: 5781
50a
Danopoulos AA,
Wright JA,
Motherwell WB.
Chem. Commun. 2005; 784
50b
Danopoulos AA,
Pugh D,
Smith H,
Saßmannshausen J.
Chem. Eur. J. 2009; 15: 5491
51
Viereck P,
Rummelt SM,
Soja NA,
Pabst TP,
Chirik PJ.
Organometallics 2021; 40: 1053
52
Lu P,
Ren X,
Xu H,
Lu D,
Sun Y,
Lu Z.
J. Am. Chem. Soc. 2021; 143: 12433