Subscribe to RSS
DOI: 10.1055/a-2003-2369
Cataract Classification Systems: A Review
Kataraktklassifikationssysteme: eine ÜbersichtAbstract
Cataract is among the leading causes of visual impairment worldwide. Innovations in treatment have drastically improved patient outcomes, but to be properly implemented, it is necessary to have the right diagnostic tools. This review explores the cataract grading systems developed by researchers in recent decades and provides insight into both merits and limitations. To this day, the gold standard for cataract classification is the Lens Opacity Classification System III. Different cataract features are graded according to standard photographs during slit lamp examination. Although widely used in research, its clinical application is rare, and it is limited by its subjective nature. Meanwhile, recent advancements in imaging technology, notably Scheimpflug imaging and optical coherence tomography, have opened the possibility of objective assessment of lens structure. With the use of automatic lens anatomy detection software, researchers demonstrated a good correlation to functional and surgical metrics such as visual acuity, phacoemulsification energy, and surgical time. The development of deep learning networks has further increased the capability of these grading systems by improving interpretability and increasing robustness when applied to norm-deviating cases. These classification systems, which can be used for both screening and preoperative diagnostics, are of value for targeted prospective studies, but still require implementation and validation in everyday clinical practice.
Zusammenfassung
Der Graue Star gehört weltweit zu einer der häufigsten Ursachen für Sehverschlechterung. Der Fortschritt der letzten Jahre in der Behandlung hat zu erheblich verbesserten Ergebnissen für die Patienten geführt, jedoch sind hierfür die richtigen diagnostischen Werkzeuge erforderlich. Diese Arbeit gibt einen Überblick über die verschiedenen Kataraktklassifikationssysteme, die in den letzten Jahrzehnten entwickelt wurden, und befasst sich mit deren Vor- und Nachteilen. Bis heute gilt das Lens Opacity Classification System III als Standard der Kataraktklassifikation. Dabei werden verschiedene Linsenmerkmale anhand von standardisierten Spaltlampenbildern eingestuft. Diese Methode wird sowohl bei Peer-Review-Publikationen zur Katarakt als auch im klinischen Alltag nur selten angewandt und ist aufgrund ihres subjektiven Charakters eingeschränkt. Die jüngsten Fortschritte in der Bildgebung, insbesondere die Scheimpflug-Tomografie sowie die optische Kohärenztomografie, haben die Möglichkeit einer objektiven Bewertung der Linsendichte eröffnet. Durch den Einsatz einer Software zur automatisierten Erkennung der Linsenanatomie konnten Forscher eine gute Korrelation zu funktionellen und chirurgischen Metriken wie Sehschärfe, Phakoemulsifikationsenergie und Operationszeit nachweisen. Die Entwicklung von Deep-Learning-Netzen hat die Leistungsfähigkeit dieser Klassifikationssysteme weiter erhöht, da diese die Interpretierbarkeit und die Robustheit bei normabweichenden Fällen verbessern. Diese Klassifikationssysteme, die sowohl für Screening als auch für präoperative Diagnostik eingesetzt werden können, könnten für gezielte prospektive Studien von großem Wert sein, bedürfen aber noch der Validierung und Implementierung im klinischen Alltag. Bislang fehlen jedoch kontrollierte Untersuchungen zur Spezifität und Sensitivität.
Key words
cataract - cataract grading - LOCS III - deep learning - Scheimpflug imaging - optical coherence tomographySchlüsselwörter
Katarakt - Kataraktklassifikation - LOCS III - Deep Learning - optische Kohärenztomografie - Scheimpflug-TomografiePublication History
Received: 21 December 2022
Accepted: 06 November 2023
Article published online:
19 January 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 World Health Organization (WHO). World report on vision. Geneva: 2019. Accessed November 19, 2023 at: https://iris.who.int/bitstream/handle/10665/328717/9789241516570-eng.pdf?sequence=18
- 2 Olson RJ. Cataract Surgery From 1918 to the Present and Future-Just Imagine!. Am J Ophthalmol 2018; 185: 10-13
- 3 Fan W, Yan H, Zhang G. Femtosecond laser-assisted cataract surgery in Fuchs endothelial corneal dystrophy: Long-term outcomes. J Cataract Refract Surg 2018; 44: 864-870
- 4 Hashemi H, Pakzad R, Yekta A. et al. Global and regional prevalence of age-related cataract: a comprehensive systematic review and meta-analysis. Eye (Lond) 2020; 34: 1357-1370
- 5 Sparrow JM, Bron AJ, Brown NA. et al. The Oxford Clinical Cataract Classification and Grading System. Int Ophthalmol 1986; 9: 207-225
- 6 Sparrow JM, Ayliffe W, Bron AJ. et al. Inter-observer and intra-observer variability of the Oxford clinical cataract classification and grading system. Int Ophthalmol 1988; 11: 151-157
- 7 Chylack jr. LT, Leske MC, Sperduto R. et al. Lens Opacities Classification System. Arch Ophthalmol 1988; 106: 330-334
- 8 Chylack jr. LT, Leske MC, McCarthy D. et al. Lens Opacities Classification System II (LOCS II). Arch Ophthalmol 1989; 107: 991-997
- 9 Chylack jr. LT, Wolfe JK, Singer DM. et al. The Lens Opacities Classification System III. Arch Ophthalmol 1993; 111: 831-836
- 10 Hall AB, Thompson JR, Deane JS. et al. LOCS III versus the Oxford Clinical Cataract Classification and Grading System for the assessment of nuclear, cortical and posterior subcapsular cataract. Ophthalmic Epidemiol 1997; 4: 179-194
- 11 Bencić G, Zorić-Geber M, Sarić D. et al. Clinical importance of the lens opacities classification system III (LOCS III) in phacoemulsification. Coll Antropol 2005; 29 (Suppl. 01) S91-S94
- 12 Davison JA, Chylack LT. Clinical application of the lens opacities classification system III in the performance of phacoemulsification. J Cataract Refract Surg 2003; 29: 138-145
- 13 Kirwan JF, Venter L, Stulting AA. et al. LOCS III examination at the slit lamp, do settings matter?. Ophthalmic Epidemiol 2003; 10: 259-266
- 14 Tan AC, Loon SC, Choi H. et al. Lens Opacities Classification System III: cataract grading variability between junior and senior staff at a Singapore hospital. J Cataract Refract Surg 2008; 34: 1948-1952
- 15 Weiner X, Baumeister M, Kohnen T. et al. Repeatability of lens densitometry using Scheimpflug imaging. J Cataract Refract Surg 2014; 40: 756-763
- 16 Lim SA, Hwang J, Hwang KY. et al. Objective assessment of nuclear cataract: comparison of double-pass and Scheimpflug systems. J Cataract Refract Surg 2014; 40: 716-721
- 17 Patrício MS, Almeida AC, Rodrigues MP. et al. Correlation between cataract grading by Scheimpflug imaging and phaco time in phacoemulsification using peristaltic and venturi pumps. Eur J Ophthalmol 2013; 23: 789-792
- 18 Faria-Correia F, Lopes B, Monteiro T. et al. Correlation between different Scheimpflug-based lens densitometry analysis and effective phacoemulsification time in mild nuclear cataracts. Int Ophthalmol 2018; 38: 1103-1110
- 19 Pei X, Bao Y, Chen Y. et al. Correlation of lens density measured using the Pentacam Scheimpflug system with the Lens Opacities Classification System III grading score and visual acuity in age-related nuclear cataract. Br J Ophthalmol 2008; 92: 1471-1475
- 20 Grewal DS, Brar GS, Grewal SP. Correlation of nuclear cataract lens density using Scheimpflug images with Lens Opacities Classification System III and visual function. Ophthalmology 2009; 116: 1436-1443
- 21 Kim JS, Chung SH, Joo CK. Clinical application of a Scheimpflug system for lens density measurements in phacoemulsification. J Cataract Refract Surg 2009; 35: 1204-1209
- 22 Pan AP, Wang QM, Huang F. et al. Correlation among lens opacities classification system III grading, visual function index-14, pentacam nucleus staging, and objective scatter index for cataract assessment. Am J Ophthalmol 2015; 159: 241-247.e2
- 23 Gupta M, Ram J, Jain A. et al. Correlation of nuclear density using the Lens Opacity Classification System III versus Scheimpflug imaging with phacoemulsification parameters. J Cataract Refract Surg 2013; 39: 1818-1823
- 24 Nixon DR. Preoperative cataract grading by Scheimpflug imaging and effect on operative fluidics and phacoemulsification energy. J Cataract Refract Surg 2010; 36: 242-246
- 25 Boettner EA, Wolter JR. Transmission of the ocular media. Invest Ophthalmol Vis Sci 1962; 1: 776-783
- 26 Kanclerz P, Khoramnia R, Wang X. Current Developments in Corneal Topography and Tomography. Diagnostics (Basel) 2021; 11: 1466
- 27 Khoramnia R, Rabsilber TM, Auffarth GU. Central and peripheral pachymetry measurements according to age using the Pentacam rotating Scheimpflug camera. J Cataract Refract Surg 2007; 33: 830-836
- 28 Rabsilber TM, Khoramnia R, Auffarth GU. Anterior chamber measurements using Pentacam rotating Scheimpflug camera. J Cataract Refract Surg 2006; 32: 456-459
- 29 Li B, Liu Y, Hu Y. et al. Comparison of the IOLMaster 700 and the Pentacam in the Analysis of the Lens Nuclear Density Before the Cataract Surgery. Front Med (Lausanne) 2021; 8: 691173
- 30 Yang MC, Lin KY. Drug-induced Acute Angle-closure Glaucoma: A Review. J Curr Glaucoma Pract 2019; 13: 104-109
- 31 Panthier C, de Wazieres A, Rouger H. et al. Average lens density quantification with swept-source optical coherence tomography: optimized, automated cataract grading technique. J Cataract Refract Surg 2019; 45: 1746-1752
- 32 Mackenbrock LHB, Łabuz G, Yildirim TM. et al. Automatic Quantitative Assessment of Lens Opacities Using Two Anterior Segment Imaging Techniques: Correlation with Functional and Surgical Metrics. Diagnostics (Basel) 2022; 12: 2406
- 33 Wong AL, Leung CK, Weinreb RN. et al. Quantitative assessment of lens opacities with anterior segment optical coherence tomography. Br J Ophthalmol 2009; 93: 61-65
- 34 Kim YN, Park JH, Tchah H. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading. J Ophthalmol 2016; 2016: 3025413
- 35 Chen D, Li Z, Huang J. et al. Lens nuclear opacity quantitation with long-range swept-source optical coherence tomography: correlation to LOCS III and a Scheimpflug imaging-based grading system. Br J Ophthalmol 2019; 103: 1048-1053
- 36 Makhotkina NY, Berendschot T, van den Biggelaar F. et al. Comparability of subjective and objective measurements of nuclear density in cataract patients. Acta Ophthalmol 2018; 96: 356-363
- 37 Brás JEG, Sickenberger W, Hirnschall N. et al. Cataract quantification using swept-source optical coherence tomography. J Cataract Refract Surg 2018; 44: 1478-1481
- 38 Heyworth P, Thompson GM, Tabandeh H. et al. The relationship between clinical classification of cataract and lens hardness. Eye (Lond) 1993; 7: 726-730
- 39 Bui AD, Sun Z, Wang Y. et al. Factors impacting cumulative dissipated energy levels and postoperative visual acuity outcome in cataract surgery. BMC Ophthalmol 2021; 21: 439
- 40 van den Berg TJTP, Franssen L, Kruijt B. et al. History of ocular straylight measurement: A review. Z Med Phys 2013; 23: 6-20
- 41 Crnej A, Hirnschall N, Petsoglou C. et al. Methods for assessing forward and backward light scatter in patients with cataract. J Cataract Refract Surg 2017; 43: 1072-1076
- 42 van der Meulen IJ, Gjertsen J, Kruijt B. et al. Straylight measurements as an indication for cataract surgery. J Cataract Refract Surg 2012; 38: 840-848
- 43 Michael R, van Rijn LJ, van den Berg TJ. et al. Association of lens opacities, intraocular straylight, contrast sensitivity and visual acuity in European drivers. Acta Ophthalmol 2009; 87: 666-671
- 44 Zhang H, Niu K, Xiong Y. et al. Automatic cataract grading methods based on deep learning. Comput Methods Programs Biomed 2019; 182: 104978
- 45 Hu S, Luan X, Wu H. et al. ACCV: automatic classification algorithm of cataract video based on deep learning. Biomed Eng Online 2021; 20: 78
- 46 Keenan TDL, Chen Q, Agrón E. et al. DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity. Ophthalmology 2022; 129: 571-584
- 47 Lu Q, Wei L, He W. et al. Lens Opacities Classification System III-based artificial intelligence program for automatic cataract grading. J Cataract Refract Surg 2022; 48: 528-534
- 48 Son KY, Ko J, Kim E. et al. Deep Learning-Based Cataract Detection and Grading from Slit-Lamp and Retro-Illumination Photographs: Model Development and Validation Study. Ophthalmol Sci 2022; 2: 100147
- 49 Zéboulon P, Panthier C, Rouger H. et al. Development and validation of a pixel wise deep learning model to detect cataract on swept-source optical coherence tomography images. J Optom 2022; 15 (Suppl. 01) S43-S49
- 50 Xiang D, Chen L, Hu L. et al. Image features of lens opacity in pediatric cataracts using ultrasound biomicroscopy. J AAPOS 2016; 20: 519-522.4
- 51 Xiang DM, Jiang N, Chen LH. et al. Establishing a novel lens opacities classification system based on ultrasound biomicroscopy (UBM) for pediatric cataracts: reliability and availability. Quant Imaging Med Surg 2021; 11: 4594-4603
- 52 Kim BZ, Patel DV, McKelvie J. et al. The Auckland Cataract Study II: Reducing Complications by Preoperative Risk Stratification and Case Allocation in a Teaching Hospital. Am J Ophthalmol 2017; 181: 20-25
- 53 Tabatabaei SA, Soleimani M, Etesali H. et al. Accuracy of Swept-Source Optical Coherence Tomography and Ultrasound Biomicroscopy for Evaluation of Posterior Lens Capsule in Traumatic Cataract. Am J Ophthalmol 2020; 216: 55-58