Synthesis 2023; 55(09): 1460-1466 DOI: 10.1055/a-2003-3207
Ruthenium-Catalyzed Regioselective Synthesis of C3-Alkylated Indoles Following Transfer Hydrogenation or Borrowing Hydrogen Strategy
Xia Chen
a
School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, P. R. of China
b
Guizhou Key Laboratory of Coal Clean Utilization, Liupanshui 553004, P. R. of China
,
Xiao-Yu Zhou∗
a
School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, P. R. of China
b
Guizhou Key Laboratory of Coal Clean Utilization, Liupanshui 553004, P. R. of China
› Author Affiliations The authors are grateful to National Natural Science Foundation of China (Nos. 22062012 and 22262019) and Scientific Research Projects of Liupanshui Normal University (LPSSYZDZK202201) for their financial support. This work was also supported by Guizhou Key Laboratory of Coal Clean Utilization (qiankehepingtairencai [2020]2001).
Abstract
By employing either borrowing hydrogen or transfer hydrogenation strategy, two straightforward [Ru(p -cymene)Cl2 ]2 -catalyzed methods for regioselective synthesis of C3-alkylated indoles have been developed, utilizing alcohols as H atom donors or alkylating agents. The developed catalytic system could accommodate a broad substrate scope including primary/secondary aliphatic alcohols and substituted indoles, and in most cases providing good yields. Notable features of the developed system include high-activity, easy operation, and air atmosphere.
Key words
transfer hydrogenation -
borrowing hydrogen -
alkylation -
indoles -
alcohols
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2003-3207.
Supporting Information
Publication History
Received: 01 December 2022
Accepted after revision: 22 December 2022
Accepted Manuscript online: 22 December 2022
Article published online: 12 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Norton RS,
Wells RJ.
J. Am. Chem. Soc. 1982; 104: 3628
1b
Yamamoto Y,
Kurazono M.
Bioorg. Med. Chem. Lett. 2007; 17: 1626
1c
Schwarz N,
Alex K,
Ali SI,
Khedkar V,
Tillack A,
Beller M.
Synlett 2007; 1091
1d
Nielsen SD,
Ruhland T,
Rasmussen LK.
Synlett 2007; 443
1e
Della RC,
Kneeteman M,
Mancini P.
Tetrahedron Lett. 2007; 48: 1435
1f
Cucek K,
Vercek B.
Synthesis 2008; 1741
1g
Bondzic BP,
Farwick A,
Liebich J,
Elibracht P.
Org. Biomol. Chem. 2008; 6: 3723
1h
Stuart DR,
Laperle MB,
Burgess KM. N,
Fagnou K.
J. Am. Chem. Soc. 2008; 130: 16474
1i
Donaldo JR,
Taylor RJ. K.
Synlett 2009; 59
1j
Varma PP,
Sherigara BS,
Mahadevan KM,
Hulikal V.
Synth. Commun. 2009; 39: 158
1k
Chen J,
Chen J.-J,
Yao X,
Gao K.
Org. Biomol. Chem. 2011; 9: 5334
1l
Zhang M.-Z,
Jia C.-Y,
Gu Y.-C,
Mulholland N,
Turner S,
Beattie D,
Zhang W.-H,
Yang G.-F,
Clough J.
Eur. J. Med. Chem. 2017; 126: 669
1m
Baumann T,
Brückner R.
Angew. Chem. Int. Ed. 2019; 58: 4714
1n
Neto JS. S,
Zeni G.
Org. Chem. Front. 2020; 7: 155
1o
Ye Z.-S,
Li J.-C,
Wang G.
Synthesis 2022; 54: 2133
2a
Tsou H.-R,
MacEwan G,
Birnberg G,
Zhang N,
Brooijmans N,
Toral-Barza L,
Hollander I,
Ayral-Kaloustian S,
Yu K.
Bioorg. Med. Chem. Lett. 2010; 20: 2259
2b
Wan Y,
Li Y,
Yan C,
Yan M,
Tang Z.
Eur. J. Med. Chem. 2019; 183: 111691
2c
Wild CT,
Miszkiel JM,
Wold EA,
Soto CA,
Ding C,
Hartley RM,
White MA,
Anastasio NC,
Cunningham KA,
Zhou J.
J. Med. Chem. 2019; 62: 288
3a
Roberts RM,
Khalaf AA.
Friedel–Crafts Alkylation Chemistry: A Century of Discovery
. Marcel Dekker; New York: 1984
3b
Poulsen TB,
Jørgensen KA.
Chem. Rev. 2008; 108: 2903
3c
Nanteuil FD,
Loup J,
Waser J.
Org. Lett. 2013; 15: 3738
3d
Wang X.-W,
Hua Y.-Z,
Wang M.-C.
J. Org. Chem. 2016; 81: 9227
Selected reviews on borrowing hydrogen strategy:
4a
Dobereiner GE,
Crabtree RH.
Chem. Rev. 2010; 110: 681
4b
Guillena G,
Ramón DJ,
Yus M.
Chem. Rev. 2010; 110: 1611
4c
Watson AJ. A,
Williams JM. J.
Science 2010; 329: 635
4d
Yang Q,
Wang Q,
Yu Z.
Chem. Soc. Rev. 2015; 44: 2305
4e
Huang F,
Liu Z,
Yu Z.
Angew. Chem. Int. Ed. 2016; 55: 862
4f
Corma A,
Navas J,
Sabater MJ.
Chem. Rev. 2018; 118: 1410
4g
Reed-Berendt BG,
Polidano K,
Morrill LC.
Org. Biomol. Chem. 2019; 17: 1595
4h
Irrgang T,
Kempe R.
Chem. Rev. 2019; 119: 2524
4i
Bartoccini F,
Retini M,
Piersanti G.
Tetrahedron Lett. 2020; 61: 151875
5
Whitney S,
Grigg R,
Derrick A,
Keep A.
Org. Lett. 2007; 9: 3299
6a
Kimura M,
Futamata M,
Mukai R,
Tamaru Y.
J. Am. Chem. Soc. 2005; 127: 4592
6b
Putra AE,
Takigawa K,
Tanaka H,
Ito Y,
Oe Y,
Ohta T.
Eur. J. Org. Chem. 2013; 6344
7a
Siddiki SM. A. H,
Kon K,
Shimizu K.-I.
Chem. Eur. J. 2013; 19: 14416
7b
Siddiki SM. A. H,
Touchy AS,
Jamil MA. R,
Toyao T,
Shimizu K.-I.
ACS Catal. 2018; 8: 3091
8a
Bartolucci S,
Mari M,
Bedini A,
Piersanti G,
Spadoni G.
J. Org. Chem. 2015; 80: 3217
8b
Chen S.-J,
Lu G.-P,
Cai C.
RSC Adv. 2015; 5: 70329
8c
Bartolucci S,
Mari M,
Gregorio GD,
Piersanti G.
Tetrahedron 2016; 72: 2233
8d
Jiang X,
Tang W,
Xue D,
Xiao J,
Wang C.
ACS Catal. 2017; 7: 1831
9a
Gregorio GD,
Mari M,
Bartoccini F,
Piersanti G.
J. Org. Chem. 2017; 82: 8769
9b
Polidano K,
Allen BD. W,
Williams JM. J,
Morrill LC.
ACS Catal. 2018; 8: 6440
9c
Seck C,
Mbaye MD,
Gaillard S,
Renaud J.-L.
Adv. Synth. Catal. 2018; 360: 4640
10a
Liu Z,
Yang Z,
Yu X,
Zhang H,
Yu B,
Zhao Y,
Liu Z.
Org. Lett. 2017; 19: 5228
10b
Zhou B,
Ma Z,
Alenad AM,
Kreyenschulte C,
Bartling S,
Beller M,
Jagadeesh RV.
Green Chem. 2022; 24: 4566
11a
Bains AK,
Biswas A,
Adhikari D.
Chem. Commun. 2020; 56: 15442
11b
Hu M,
Jiang Y,
Sun N,
Hu B,
Shen Z,
Hu X,
Jin L.
New J. Chem. 2021; 45: 10057
12
Nguyen N.-K,
Nam DH,
Phuc BV,
Nguyen VH,
Trinh QT,
Hung TQ,
Dang TT.
Mol. Catal. 2021; 505: 111462
13
Zhao M,
Li X,
Zhang X,
Shao Z.
Chem. Asian J. 2022; 17: e202200483
14a
Imm S,
Bähn S,
Tillack A,
Mevius K,
Neubert L,
Beller M.
Chem. Eur. J. 2010; 16: 2705
14b
Biswas N,
Sharma R,
Srimani D.
Adv. Synth. Catal. 2020; 362: 2902
15
Cano R,
Yus M,
Ramón DJ.
Tetrahedron Lett. 2013; 54: 3394
For selective examples on TH, see:
16a
Brieger G,
Nestrick TJ.
Chem. Rev. 1974; 74: 567
16b
Gladiali S,
Alberico E.
Chem. Soc. Rev. 2006; 35: 226
16c
Morris RH.
Chem. Soc. Rev. 2009; 38: 2282
16d
Wang D,
Astruc D.
Chem. Rev. 2015; 115: 6621
16e
Zhou X.-Y,
Chen X.
Org. Biomol. Chem. 2021; 19: 548
17a
Rass-Hansen J,
Falsig H,
Joergensen B,
Christensen CH.
J. Chem. Technol. Biotechnol. 2007; 82: 329
17b
Gray KA,
Zhao L,
Emptage M.
Curr. Opin. Chem. Biol. 2006; 10: 141
18a
Bomgardner MM.
Chem. Eng. News 2014; 92 (36): 7
18b
Bomgardner MM.
Chem. Eng. News 2015; 93 (29): 7