Subscribe to RSS
DOI: 10.1055/a-2004-5883
A Robust, Gram-Scale and High-Yield Synthesis of MDP Congeners for Activation of the NOD2 Receptor and Vaccine Adjuvantation
The authors are grateful for the financial support from Sindh Higher Education Commission (project number SHEC/SRSP/MS-1/7/2020-21), and for co-funding from the Pakistan Science Foundation (project number PSF/CRP/S-ICCBS/T-Helix-(175)).
Abstract
The bacterial peptidoglycan (PGN) constituent muramyl dipeptide (MDP) and its congeners possess immuno-adjuvant activity, and find applications in vaccines to potentiate the immune response of antigens. It confers non-specific resistance towards pathogenic infections and defense against tumors. In this work, the parent MDP molecule is re-designed by replacing its carbohydrate moiety with an immunoregulatory xanthine scaffold, while conserving the l-d configuration of the pharmacophore. Alkyl chains are introduced at the C-terminus of d-isoglutamine to help the molecules access cytoplasmic NOD2 receptors and activate the innate immune system. Lipophilic MDP congeners are thus obtained by adopting a direct or indirect convergent synthetic route with overall yields of >50%. We found that an indirect approach can reliably be implemented on gram scale, thereby unlocking access to substantial amounts of pathogen-associated molecular patterns for in vivo studies, which will accelerate the development of NOD2 immuno-adjuvants against viral and bacterial infections.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2004-5883.
- Supporting Information
Publication History
Received: 04 November 2022
Accepted after revision: 29 December 2022
Accepted Manuscript online:
29 December 2022
Article published online:
02 February 2023
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Grimes CL, Ariyananda LD. Z, Melnyk JE, O’Shea EK. J. Am. Chem. Soc. 2012; 134: 13535
- 2a Martinon F, Agostini L, Meylan E, Tschopp J. Curr. Biol. 2004; 14: 1929
- 2b Gangopadhyay A, Devi S, Tenguria S, Carriere J, Nguyen H, Jäger E, Khatri H, Chu LH, Ratsimandresy RA, Dorfleutner A, Stehlik C. Nat. Immunol. 2022; 23: 892
- 2c D’Ambrosio EA, Bersch KL, Lauro ML, Grimes CL. J. Am. Chem. Soc. 2020; 142: 10926
- 3a Mashayekh S, Bersch KL, Ramsey J, Harmon T, Prather B, Genova LA, Grimes CL. J. Org. Chem. 2020; 85: 16243
- 3b Xing S, Gleason JL. Org. Biomol. Chem. 2015; 13: 1515
- 4a Crump GM, Zhou J, Mashayekh S, Grimes CL. Chem. Commun. 2020; 56: 13313
- 4b Jakopin Ž, Corsini E, Gobec M, Mlinarič-Raščan I, Dolenc MS. Eur. J. Med. Chem. 2011; 46: 3762
- 4c Melnyk JE, Mohanan V, Schaefer AK, Hou C.-W, Grimes CL. J. Am. Chem. Soc. 2015; 137: 6987
- 5 Planinšek O, Srčič S. Int. J. Pharm. 1999; 187: 199
- 6 Jakopin Ž. Curr. Med. Chem. 2013; 20: 2068
- 7a Chedid L, Audibert F. Springer Semin. Immunopathol. 1985; 8: 401
- 7b Bomford R. Rev. Med. Virol. 1992; 2: 169
- 8a Gobec M, Mlinarič-Raščan I, Dolenc MS, Jakopin Ž. Eur. J. Med. Chem. 2016; 116: 1
- 8b Guzelj S, Nabergoj S, Gobec M, Pajk S, Klančič V, Slütter B, Frkanec R, Štimac A, Šket P, Plavec J, Mlinarič-Raščan I, Jakopin Ž. J. Med. Chem. 2021; 64: 7809
- 8c Gobec M, Tomašič T, Štimac A, Frkanec R, Trontelj J, Anderluh M, Mlinarič-Raščan I, Jakopin Ž. J. Med. Chem. 2018; 61: 2707
- 8d Jakopin Ž, Gobec M, Mlinarič-Raščan I, Sollner Dolenc M. J. Med. Chem. 2012; 55: 6478
- 9 Ribić R, Paurević M, Tomić S. Croat. Chem. Acta 2019; 92: 153
- 10a Ma Y, Zhao N, Liu G. J. Med. Chem. 2011; 54: 2767
- 10b Dong Y, Wang S, Wang C, Li Z, Ma Y, Liu G. J. Med. Chem. 2017; 60: 1219
- 10c Li X, Yu J, Xu S, Wang N, Yang H, Yan Z, Cheng G, Liu G. Glycoconjugate J. 2008; 25: 415
- 10d Wen X, Zheng P, Ma Y, Ou Y, Huang W, Li S, Liu S, Zhang X, Wang Z, Zhang Q, Cheng W, Lin R, Li H, Cai Y, Hu C, Wu N, Wan L, Pan T, Rao J, Bei X, Wu W, Jin J, Yan J, Liu G. J. Med. Chem. 2018; 61: 1519
- 11a Khan F.-A, Ulanova M, Bai B, Yalamati D, Jiang Z.-H. Eur. J. Med. Chem. 2017; 141: 26
- 11b Khan F.-A, Nasim N, Wang Y, Alhazmi A, Sanam M, Ul-Haq Z, Yalamati D, Ulanova M, Jiang Z.-H. Eur. J. Med. Chem. 2021; 209: 112863
- 12a Keček Plešec K, Urbančič D, Gobec M, Pekošak A, Tomašič T, Anderluh M, Mlinarič-Raščan I, Jakopin Ž. Bioorg. Med. Chem. 2016; 24: 5221
- 12b Jakopin Z, Dolenc MS. Curr. Med. Chem. 2010; 17: 651
- 12c Jakopin Ž, Corsini E. Int. J. Mol. Sci. 2019; 20: 4265
- 12d Guzelj S, Tomašič T, Jakopin Ž. Biomolecules 2022; 12: 1054
- 12e Guzelj S, Bizjak Š, Jakopin Ž. ACS Med. Chem. Lett. 2022; 13: 1270
- 12f Jakopin Ž. Tetrahedron Lett. 2015; 56: 504
- 13a Maršavelski A, Paurević M, Ribić R. Org. Biomol. Chem. 2021; 19: 7001
- 13b Ribić R, Manček-Keber M, Chain F, Sinnaeve D, Martins JC, Jerala R, Tomić S, Fehér K. J. Phys. Chem. B 2020; 124: 4132
- 13c Štimac A, Šegota S, Dutour Sikirić M, Ribić R, Frkanec L, Svetličić V, Tomić S, Vranešić B, Frkanec R. Biochim. Biophys. Acta, Biomembr. 2012; 1818: 2252
- 13d Ribić R, Habjanec L, Vranešić B, Frkanec R, Tomić S. Chem. Biodivers. 2012; 9: 777
- 13e Ribić R, Stojković R, Milković L, Antica M, Cigler M, Tomić S. Beilstein J. Org. Chem. 2019; 15: 1805
- 14a Wang S, Yang J, Li X, Liu Z, Wu Y, Si G, Tao Y, Zhao N, Hu X, Ma Y, Liu G. J. Med. Chem. 2017; 60: 5162
- 14b Liu G, Zhang S.-D, Xia S.-Q, Ding Z.-K. Bioorg. Med. Chem. Lett. 2000; 10: 1361
- 14c Yang H.-Z, Xu S, Liao X.-Y, Zhang S.-D, Liang Z.-L, Liu B.-H, Bai J.-Y, Jiang C, Ding J, Cheng G.-F, Liu G. J. Med. Chem. 2005; 48: 5112
- 14d Zhao N, Ma Y, Zhang S, Fang X, Liang Z, Liu G. Bioorg. Med. Chem. Lett. 2011; 21: 4292
- 15 Sheehan JC, Hess GP. J. Am. Chem. Soc. 1955; 77: 1067
- 16 El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
- 17a Hu L, Xu S, Zhao Z, Yang Y, Peng Z, Yang M, Wang C, Zhao J. J. Am. Chem. Soc. 2016; 138: 13135
- 17b Wang Z, Wang X, Wang P, Zhao J. J. Am. Chem. Soc. 2021; 143: 10374
- 17c Xu S, Jiang D, Peng Z, Hu L, Liu T, Zhao L, Zhao J. Angew. Chem. Int. Ed. 2022; 61: e202212247
- 17d Hu L, Zhao J. Synlett 2017; 28: 1663
- 18a Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nuñez G. J. Biol. Chem. 2003; 278: 5509
- 18b Chedid L, Audibert F, Lefrancier P, Choay J, Lederer E. Proc. Natl. Acad. Sci. 1976; 73: 2472
- 19a Clerici M, Piconi S, Balotta C, Trabattoni D, Capetti A, Fusi ML, Ruzzante S, Longhi R, Colombo MC, Moroni M, Milazzo F. J. Infect. Dis. 1997; 175: 1210
- 19b Suresh R, Vig M, Bhatia S, Goodspeed EP. B, John B, Kandpal U, Srivastava S, George A, Sen R, Bal V, Durdik JM, Rath S. J. Immunol. 2002; 169: 4262
- 19c Zheng Z, Li J, Sun J, Song T, Wei C, Zhang Y, Rao G, Chen G, Li D, Yang G. Antiviral Res. 2011; 89: 149
- 19d Pei Y, Wang C, Yan SF, Liu G. J. Med. Chem. 2017; 60: 6461
- 19e Zhang B.-Y, Chai D.-P, Wu Y.-H, Qiu L.-P, Zhang Y.-Y, Ye Z.-H, Yu X.-P. Curr. Drug Targets 2019; 20: 1636
- 19f Yamazaki Z, Tagaya I. J. Gen. Virol. 1980; 50: 429
- 19g Nunnari G, Argyris E, Fang J, Mehlman KE, Pomerantz RJ, Daniel R. Virology 2005; 335: 177
- 20 Voynikov Y, Valcheva V, Momekov G, Peikov P, Stavrakov G. Bioorg. Med. Chem. Lett. 2014; 24: 3043
- 21 Khan F.-A, Khanam R, Qasim MW, Wang Y, Jiang ZH. Eur. J. Org. Chem. 2021; 6688
- 22 Che P, Lu F, Nie X, Huang Y, Yang Y, Wang F, Xu J. Chem. Commun. 2015; 51: 1077
- 23 Sarkar R, Debnath M, Maji K, Haldar D. RSC Adv. 2015; 5: 76257
- 24 Raw SA. Tetrahedron Lett. 2009; 50: 946
- 25 Kamiński ZJ, Kolesińska B, Kolesińska J, Sabatino G, Chelli M, Rovero P, Błaszczyk M, Główka ML, Papini AM. J. Am. Chem. Soc. 2005; 127: 16912