Synthesis 2023; 55(10): 1533-1542 DOI: 10.1055/a-2005-4296
Tandem Deoxygenative Geminal Fluorosulfonimidation of 1,2-Diketones via Formal N–F Insertion Enabled by Dealkylation-Resistant Phosphoramidite
Sujin Bak‡
,
Yeri Son‡
,
Sunjoo Hwang
,
Ha Eun Kim
,
Jun-Ho Choi∗
,
Won-jin Chung∗
This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2020R1F1A1076028 and NRF-2022R1A2C1007351).
Abstract
Our group has recently developed an α-fluoroamine synthesis using dioxaphospholenes derived from various 1,2-diketones and the dealkylation-resistant phosphoramidite as carbene surrogates, enabling the formal insertion into the N–F bond of (PhSO2 )2 NF. This full account presents the scope and limitations in terms of the reactivity and the site selectivity; these were rationalized through computational analysis. In addition, the efforts to broaden the synthetic utility of the current process by incorporating other nitrogen nucleophiles and halogen electrophiles are described.
Key words
fluoroamine -
sulfonimide -
dioxaphospholene -
carbene surrogate -
phosphoramidite -
N–F insertion -
geminal difunctionalization -
1,2-diketone
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2005-4296.
Supporting Information
Publication History
Received: 04 November 2022
Accepted after revision: 31 December 2022
Accepted Manuscript online: 31 December 2022
Article published online: 02 February 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Morgenthaler M,
Schweizer E,
Hoffmann-Röder A,
Benini F,
Martin RE,
Jaeschke G,
Wagner B,
Fischer H,
Bendels S,
Zimmeril D,
Schneider J,
Diederich F,
Kansy M,
Müller K.
ChemMedChem 2007; 2: 1100
2a
Donetti A,
Cereda E,
Ezhaya A,
Micheletti R.
J. Med. Chem. 1989; 32: 957
2b
van Niel MB,
Collins I,
Beer MS,
Broughton HB,
Cheng SK. F,
Goodacre SC,
Heald A,
Locker KL,
Mac-Leod AM,
Morrison D,
Moyes CR,
O’Connor D,
Pike A,
Rowley M,
Russell MG. N,
Sohal B,
Stanton JA,
Thomas S,
Verrier H,
Watt AP,
Castro JL.
J. Med. Chem. 1999; 42: 2087
2c
Jeschke P.
ChemBioChem 2004; 5: 570
2d
Böhm H.-J,
Banner D,
Bendels S,
Kansy M,
Kuhn B,
Müller K,
ObstSander U,
Stahl M.
ChemBioChem 2004; 5: 637
2e
Isanbor C,
O’Hagan D.
J. Fluorine Chem. 2006; 127: 303
2f
Müller K,
Faeh C,
Diederich F.
Science 2007; 317: 1881
2g
Kirk KL.
Org. Process Res. Dev. 2008; 12: 305
2h
Hagmann WK.
J. Med. Chem. 2008; 51: 4359
2i
O’Hagan D.
Chem. Soc. Rev. 2008; 37: 308
2j
Purser S,
Moore PR,
Swallow S,
Gouverneur V.
Chem. Soc. Rev. 2008; 37: 320
2k
Hunter L.
Beilstein J. Org. Chem. 2010; 6: 38
2l
Gills EP,
Eastman KJ,
Hill MD,
Donnelly DJ,
Meanwell NA.
J. Med. Chem. 2015; 58: 8315
2m
Zhou Y,
Wang J,
Gu Z,
Wang S,
Zhu W,
Aceña JL,
Soloshonok VA,
Izawa K,
Liu H.
Chem. Rev. 2016; 116: 422
2n
Meanwell NA.
J. Med. Chem. 2018; 61: 5822
3a
Stavber S,
Pecan TS,
Papež M,
Zupan M.
Chem. Commun. 1996; 2247
3b
Yadav JS,
Reddy BV. S,
Chary DN,
Chandrakanth D.
Tetrahedron Lett. 2009; 50: 1136
3c
Wu T,
Yin G,
Liu G.
J. Am. Chem. Soc. 2009; 131: 16354
3d
Qiu S,
Xu T,
Zhou J,
Guo Y,
Liu G.
J. Am. Chem. Soc. 2010; 132: 2856
3e
Duthion B,
Pardo DG,
Cossy J.
Org. Lett. 2010; 12: 4620
3f
Kalow JA,
Schmitt DE,
Doyle AG.
J. Org. Chem. 2012; 77: 4177
3g
Wang Q,
Zhong W,
Wei X,
Ning M,
Meng X,
Li Z.
Org. Biomol. Chem. 2012; 10: 8566
3h
Kong W,
Feige P,
de Haro T,
Nevado C.
Angew. Chem. Int. Ed. 2013; 52: 2469
3i
Suzuki S,
Kamo T,
Fukushi K,
Hiramatsu T,
Tokunaga E,
Dohi T,
Kita Y,
Shibata N.
Chem. Sci. 2014; 5: 2754
3j
Zhang H,
Song Y,
Zhao J,
Zhang J,
Zhang Q.
Angew. Chem. Int. Ed. 2014; 53: 11079
3k
Chen P,
Liu G.
Eur. J. Org. Chem. 2015; 4295
3l
Saavedra-Olavarría J,
Arteaga GC,
López JJ,
Pérez EG.
Chem. Commun. 2015; 51: 3379
3m
Lu D.-F,
Zhu C.-L,
Sears JD,
Xu H.
J. Am. Chem. Soc. 2016; 138: 11360
3n
Serguchev YA,
Ponomarenko MV,
Ignatév NV.
J. Fluorine Chem. 2016; 185: 1
3o
Hou C,
Chen P,
Liu G.
Angew. Chem. Int. Ed. 2020; 59: 2735
3p
Feng G,
Ku CK,
Zhao J,
Wang Q.
J. Am. Chem. Soc. 2022; 144: 20463
4a
Chen G,
Song J,
Yu Y,
Luo X,
Li C,
Huang X.
Chem. Sci. 2016; 7: 1786
4b
Zhou Y,
Zhang Y,
Wang J.
Org. Biomol. Chem. 2016; 14: 10444
4c
Huang J,
Li L,
Chen H,
Xiao T,
He Y,
Zhou L.
Org. Chem. Front. 2017; 4: 529
5a
Ramirez F,
Mitra RB,
Desai NB.
J. Am. Chem. Soc. 1960; 82: 2651
5b
Ramirez F,
Desai NB.
J. Am. Chem. Soc. 1960; 82: 2652
5c
Ramirez F.
Pure Appl. Chem. 1964; 9: 337
5d
Ramirez F.
Synthesis 1974; 90
5e
Ramirez F,
Kugler HJ,
Smith CP.
Tetrahedron 1968; 24: 3153
5f
Ramirez F.
Acc. Chem. Res. 1968; 1: 168
5g
Miller EJ,
Zhao W,
Herr JD,
Radosevich AT.
Angew. Chem. Int. Ed. 2012; 51: 10605
5h
Zhao W,
Fink DM,
Labutta CA,
Radosevich AT.
Org. Lett. 2013; 15: 3090
5i
Wang SR,
Radosevich AT.
Org. Lett. 2015; 17: 3810
5j For a recent review, see:
Liu Y,
Sun F,
He Z.
Tetrahedron Lett. 2018; 59: 4136
For recent applications of the Kukhtin–Ramirez reaction, see:
6a
Tan P,
Wang SR.
Org. Lett. 2019; 21: 6029
6b
Zhang J,
Hao J,
Huang Z,
Han J,
He Z.
Chem. Commun. 2020; 56: 10251
6c
Liu R,
Liu J,
Cao J,
Li R,
Zhou R,
Qiao Y,
Gao W.-C.
Org. Lett. 2020; 22: 6922
6d
Deng Y.-H,
Chu W.-D,
Shang Y.-H,
Yu K.-Y,
Jia Z.-L,
Fan C.-A.
Org. Lett. 2020; 22: 8376
6e
Jin S,
Dang HT,
Haug GC,
Nguyen VD,
Arman HD,
Larionov OV.
Chem. Sci. 2020; 11: 9101
6f
Tan P,
Wang H,
Wang SR.
Org. Lett. 2021; 23: 2590
6g
Zhang J,
Qiu Y,
Zhang B,
Huang Z,
He Z.
Org. Lett. 2021; 23: 1880
6h
Zhang Z,
Jing L,
Li E.-Q,
Duan Z.
Org. Chem. Front. 2022; 9: 3215
7a
Choi G,
Kim HE,
Hwang S,
Jang H,
Chung W.-j.
Org. Lett. 2020; 22: 4190
7b
Son Y,
Hwang S,
Bak S,
Kim HE,
Choi J.-H,
Chung W.-j.
Org. Biomol. Chem. 2022; 20: 3263
8a
Chinchilla R,
Najera C.
Chem. Rev. 2007; 107: 874
8b
Chinchilla R,
Najera C.
Chem. Soc. Rev. 2011; 40: 5084
8c
Jung D.-Y,
Park SY,
Kim S.-H.
Bull. Korean Chem. Soc. 2022; 43: 110
9
Park K,
Bae G,
Cheo J,
Song KH,
Lee S.
J. Org. Chem. 2010; 75: 6244
10a
Stuart DR,
Bertrand-Laperle M,
Burgess KM. N,
Fagnou K.
J. Am. Chem. Soc. 2008; 130: 16474
10b
Yan Q,
Shen X,
Zi G,
Hou G.
Chem. Eur. J. 2020; 26: 5961
11a
Xu Y,
Wan X.
Tetrahedron Lett. 2013; 54: 642
11b
Ren W,
Liu J,
Long C,
Wan X.
Adv. Synth. Catal. 2010; 352: 1424
12
Sibi MP,
Marvin M,
Sharma R.
J. Org. Chem. 1995; 60: 5016
13a
Harrington LE,
Britten JF,
Hughes DW,
Bain AD,
Thépot J.-Y,
McGlinchey MJ.
J. Organomet. Chem. 2002; 656: 243
13b
Reddy SR,
Stella S,
Chadha A.
Synth. Commun. 2012; 42: 3493
14a
Hammett LP.
J. Am. Chem. Soc. 1937; 59: 96
14b
Hammett LP.
Chem. Rev. 1935; 17: 125
14c
Hansch C,
Leo A,
Taft RW.
Chem. Rev. 1991; 91: 165
15 CCDC 2110574 and CCDC 2110575 contain the supplementary crystallographic data for this study. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
16 In our related study on geminal chlorofluorination,7a chloride anion was nucleophilic enough to produce both constitutional isomers from 4n .
17a The alkene geometry was assigned through comparison with the reported 1 H–19 F coupling constant of related compounds; see:
Zhang H,
Lin J.-H,
Xiao J.-C,
Gu Y.-C.
Org. Biomol. Chem. 2014; 12: 581
See also:
17b
Brady SF,
Ilton MA,
Johnson WS.
J. Am. Chem. Soc. 1968; 90: 2882
17c
Sarel S,
Yovell J,
Sarel-Imber M.
Angew. Chem. Int. Ed. 1968; 7: 577
18a
Shohji N,
Kawaji T,
Okamoto S.
Org. Lett. 2011; 13: 2626
18b
Zhou A,
Shao Y,
Chen F,
Qian P.-C,
Cheng J.
Tetrahedron Lett. 2022; 89: 153597
19 The imine geometry was assigned on the basis of computational calculation. The Z -isomer is more stable by 2.7 kcal/mol at the M06-2X-D3/6-31+G(d,p)/PCM(CH2 Cl2 ) level.
20
Cho E,
Kim M,
Jayaraman A,
Kim J,
Lee S.
Eur. J. Org. Chem. 2018; 781
21 Geminal aminochlorination has previously been shown to be challenging with diazo compounds.4a
22
Frisch MJ,
Trucks GW,
Schlegel HB,
Scuseria GE,
Robb MA,
Cheeseman JR,
Scalmani G,
Barone V,
Petersson GA,
Nakatsuji H,
Li X,
Caricato M,
Marenich AV,
Bloino J,
Janesko BG,
Gomperts R,
Mennucci B,
Hratchian HP,
Ortiz JV,
Izmaylov AF,
Sonnenberg JL,
Williams-Young D,
Ding F,
Lipparini F,
Egidi F,
Goings J,
Peng B,
Petrone A,
Henderson T,
Ranasinghe D,
Zakrzewski VG,
Gao J,
Rega N,
Zheng G,
Liang W,
Hada M,
Ehara M,
Toyota K,
Fukuda R,
Hasegawa J,
Ishida M,
Nakajima T,
Honda Y,
Kitao O,
Nakai H,
Vreven T,
Throssell K,
Montgomery JA. Jr,
Peralta JE,
Ogliaro F,
Bearpark MJ,
Heyd JJ,
Brothers EN,
Kudin KN,
Staroverov VN,
Keith TA,
Kobayashi R,
Normand J,
Raghavachari K,
Rendell AP,
Burant JC,
Iyengar SS,
Tomasi J,
Cossi M,
Millam JM,
Klene M,
Adamo C,
Cammi R,
Ochterski JW,
Martin RL,
Morokuma K,
Farkas O,
Foresman JB,
Fox DJ.
Gaussian 16, Revision C.01. Gaussian, Inc; Wallingford CT: 2019
23 The initial input geometry was obtained by Molecular Orbital Package 2016:
Stewart JJ. P.
MOPAC2016. Stewart Computational Chemistry; Colorado Springs: 2016. http//openmopac.net/
24a
Zhao Y,
Truhlar DG.
Theor. Chem. Acc. 2008; 120: 215
24b
Zhao Y,
Truhlar DG.
Acc. Chem. Res. 2008; 41: 157
25a
Grimme S,
Antony J,
Ehrlich S,
Krieg H.
J. Chem. Phys. 2010; 132: 154104
25b
Peverati R,
Baldridge KK.
J. Chem. Theory Comput. 2008; 4: 2030
26a
Miertuš S,
Scrocco E,
Tomasi J.
Chem. Phys. 1981; 55: 117
26b
Pascual-Ahuir JL,
Silla E,
Tuñón I.
J. Comput. Chem. 1994; 15: 1127
26c
Barone V,
Cossi M.
J. Phys. Chem. A 1998; 102: 1995
27a
de Meijere A.
Angew. Chem. Int. Ed. 1979; 18: 809
27b
Olah GA,
Reddy VP,
Prakash GK. S.
Chem. Rev. 1992; 92: 69
28
Nielsen DK,
Doyle AG.
Angew. Chem. Int. Ed. 2011; 50: 6056
29
Liang J,
Han J,
Wu J,
Wu P,
Hu J,
Hu F,
Wu F.
Org. Lett. 2019; 21: 6844