Subscribe to RSS
DOI: 10.1055/a-2005-5497
Anti-glutamatergic Effects of Three Lignan Compounds: Arctigenin, Matairesinol and Trachelogenin – An ex vivo Study on Rat Brain Slices
Supported by: Tempus Közalapítvány Stipendium Hungaricum scholarshipSupported by: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal NAP_NKFIH-4300-1/2017-NKP_17
Supported by: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal OTKA K-134221
Supported by: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal OTKA K-135712
Supported by: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal TKP2020-IKA-05
Abstract
Arctigenin is a bioactive dibenzylbutyrolactone-type lignan exhibiting various pharmacological activities. The neuroprotective effects of arctigenin were demonstrated to be mediated via inhibition of AMPA and KA type glutamate receptors in the somatosensory cortex of the rat brain. The aim of this study was to compare the effects of arctigenin with matairesinol and trachelogenin on synaptic activity in ex vivo rat brain slices. Arctigenin, matairesinol and trachelogenin were isolated from Arctium lappa, Centaurea scabiosa and Cirsium arvense, respectively, and applied on brain slices via perfusion medium at the concentration range of 0.5 – 40 µM. The effects of the lignans were examined in the CA1 hippocampus and the somatosensory cortex by recording electrically evoked field potentials. Arctigenin and trachelogenin caused a significant dose-dependent decrease in the amplitude of hippocampal population spikes (POPS) and the slope of excitatory postsynaptic potentials (EPSPs), whereas matairesinol (1 µM and 10 µM) decreased EPSP slope but had no effect on POPS amplitude. Trachelogenin effect (0.5 µM, 10 µM, 20 µM) was comparable to arctigenin (1 µM, 20 µM, 40 µM) (p > 0.05). In the neocortex, arctigenin (10 µM, 20 µM) and trachelogenin (10 µM) significantly decreased the amplitude of evoked potential early component, while matairesinol (1 µM and 10 µM) had no significant effect (p > 0.05). The results suggest that trachelogenin and arctigenin act via inhibition of AMPA and KA receptors in the brain and trachelogenin has a higher potency than arctigenin. Thus, trachelogenin and arctigenin could serve as lead compounds in the development of neuroprotective drugs.
Key words
Arctium lappa - Centaurea scabiosa - Cirsium arvense - Asteraceae - Lignans - Hippocampus - Neocortex - Glutamate receptors - Neuronal excitabilitySupporting Information
- Supporting Information
HPLC-UV chromatogram of matairesinol and methodical details for its isolation is available as Supporting Information.
Publication History
Received: 19 October 2022
Accepted after revision: 01 January 2023
Accepted Manuscript online:
02 January 2023
Article published online:
16 February 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Li Y, Xie S, Ying J, Wei W, Gao K. Chemical structures of lignans and neolignans isolated from Lauraceae. Molecules 2018; 23 DOI: 10.3390/molecules23123164.
- 2 Solyomváry A, Beni S, Boldizsar I. Dibenzylbutyrolactone lignans – A review of their structural diversity, biosynthesis, occurrence, identification and importance. Mini-Rev Med Chem 2017; 17: 1053-1074 DOI: 10.2174/1389557516666160614005828.
- 3 Boldizsár I, Füzfai Z, Tóth F, Sedlák É, Borsodi L, Molnár-Perl I. Mass fragmentation study of the trimethylsilyl derivatives of arctiin, matairesinoside, arctigenin, phylligenin, matairesinol, pinoresinol and methylarctigenin: Their gas and liquid chromatographic analysis in plant extracts. J Chromatogr A 2010; 1217: 1674-1682 DOI: 10.1016/j.chroma.2010.01.019.
- 4 Sólyomváry A, Mervai Z, Tóth G, Ress ÁE, Noszál B, Molnár-Perl I, Baghy K, Kovalszky I, Boldizsár I. A simple and effective enrichment process of the antiproliferative lignan arctigenin based on the endogenous enzymatic hydrolysis of Serratula tinctoria and Arctium lappa fruits. Process Biochem 2015; 50: 2281-2288 DOI: 10.1016/j.procbio.2015.09.011.
- 5 Boldizsár I, Kraszni M, Tóth F, Noszál B, Molnár-Perl I. Complementary fragmentation pattern analysis by gas chromatography-mass spectrometry and liquid chromatography tandem mass spectrometry confirmed the precious lignan content of Cirsium weeds. J Chromatogr A 2010; 1217: 6281-6289 DOI: 10.1016/j.chroma.2010.08.018.
- 6 Niciu MJ, Kelmendi B, Sanacora G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol Biochem Behav 2012; 100: 656-664 DOI: 10.1016/j.pbb.2011.08.008.
- 7 Pinky NF, Wilkie CM, Barnes JR, Parsons MP. Region-and activity-dependent regulation of extracellular glutamate. J Neurosci 2018; 38: 5351-5366 DOI: 10.1523/JNEUROSCI.3213-17.2018.
- 8 Mattson MP. Excitotoxicity. In: Schapira A, Wszolek Z, Dawson TM, Nicholas W. Hrsg. Neurodegeneration. Hoboken: John Wiley & Sons, Ltd; 2017: 37-45
- 9 Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM. AMPA Receptors as Therapeutic Targets for Neurological Disorders. In: Donev R. ed. Ion Channels as Therapeutic Targets, Part A. Amsterdam: Elsevier Inc.; 2016
- 10 Baranovic J. AMPA receptors in the synapse: Very little space and even less time. Neuropharmacology 2021; 196: 108711 DOI: 10.1016/j.neuropharm.2021.108711.
- 11 Sihra TS, Rodríguez-Moreno A. Metabotropic Actions of Kainate Receptors in the Control of GABA Release. In: Sihra TS, Rodríguez-Moreno A. Hrsg. Kainate Receptors: Novel Signaling Insights. London: Landes Bioscience and Springer Science+Business Media; 2011: 1-10
- 12 Rodríguez-Moreno A, Sihra TS. Metabotropic actions of kainate receptors in the control of glutamate release in the hippocampus. Adv Exp Med Biol 2011; 717: 39-48 DOI: 10.1007/978-1-4419-9557-5_4.
- 13 Sihra TS, Rodríguez-Moreno A. Presynaptic kainate receptor-mediated bidirectional modulatory actions: Mechanisms. Neurochem Int 2013; 62: 982-987 DOI: 10.1016/j.neuint.2013.03.012.
- 14 Melyan Z, Lancaster B, Wheal HV. Metabotropic regulation of intrinsic excitability by synaptic activation of kainate receptors. J Neurosci 2004; 24: 4530-4534 DOI: 10.1523/JNEUROSCI.5356-03.2004.
- 15 Negrete-Díaz JV, Sihra TS, Delgado-García JM, Rodríguez-Moreno A. Kainate receptor-mediated presynaptic inhibition converges with presynaptic inhibition mediated by Group II mGluRs and long-term depression at the hippocampal mossy fiber-CA3 synapse. J Neural Transm 2007; 114: 1425-1431 DOI: 10.1007/s00702-007-0750-4.
- 16 Lyon L, Borel M, Carrión M, Kew JNC, Corti C, Harrison PJ, Burnet PWJ, Paulsen O, Rodríguez-Moreno A. Hippocampal mossy fiber long-term depression in Grm2/3 double knockout mice. Synapse 2011; 65: 945-954 DOI: 10.1002/syn.20923.
- 17 Nair JD, Wilkinson KA, Henley JM, Mellor JR. Kainate receptors and synaptic plasticity. Neuropharmacology 2021; 196: 108540 DOI: 10.1016/j.neuropharm.2021.108540.
- 18 Lerma J, Marques JM. Kainate receptors in health and disease. Neuron 2013; 80: 292-311 DOI: 10.1016/j.neuron.2013.09.045.
- 19 Carta M, Fièvre S, Gorlewicz A, Mulle C. Kainate receptors in the hippocampus. Eur J Neurosci 2014; 39: 1835-1844 DOI: 10.1111/ejn.12590.
- 20 Pressey JC, Woodin MA. Kainate receptor regulation of synaptic inhibition in the hippocampus. J Physiol 2021; 599: 485-492 DOI: 10.1113/JP279645.
- 21 Borbély S, Jócsák G, Moldován K, Sedlák É, Preininger É, Boldizsár I, Tóth A, Atlason PT, Molnár E, Világi I. Arctigenin reduces neuronal responses in the somatosensory cortex via the inhibition of non-NMDA glutamate receptors. Neurochem Int 2016; 97: 83-90
- 22 Jouhanneau JS, Ball SM, Molnár E, Isaac JTR. Mechanisms of bi-directional modulation of thalamocortical transmission in barrel cortex by presynaptic kainate receptors. Neuropharmacology 2011; 60: 832-841 DOI: 10.1016/j.neuropharm.2010.12.023.
- 23 Andrade-Talavera Y, Duque-Feria P, Sihra TS, Rodríguez-Moreno A. Pre-synaptic kainate receptor-mediated facilitation of glutamate release involves PKA and Ca2+-calmodulin at thalamocortical synapses. J Neurochem 2013; 126: 565-578 DOI: 10.1111/jnc.12310.
- 24 Paternain AV, Herrera MT, Nieto MA, Lerma J. GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J Neurosci 2000; 20: 196-205 DOI: 10.1523/jneurosci.20-01-00196.2000.
- 25 Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol Rev 2010; 62: 405-496 DOI: 10.1124/pr.109.002451.
- 26 Wong HHW, Rannio S, Jones V, Thomazeau A, Sjöström PJ. NMDA receptors in axons: Thereʼs no coincidence. J Physiol 2021; 599: 367-387 DOI: 10.1113/JP280059.
- 27 Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 2018; 150: 1081-1105 DOI: 10.1085/jgp.201812032.
- 28 Negrete-Díaz JV, Falcón-Moya R, Rodríguez-Moreno A. Kainate receptors: From synaptic activity to disease. FEBS J 2022; 289: 5074-5088 DOI: 10.1111/febs.16081.
- 29 Bartsch T, Wulff P. The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience 2015; 309: 1-16 DOI: 10.1016/j.neuroscience.2015.07.084.
- 30 Gao HM, Hong JS. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. 2008
- 31 World Health Organization. Epilepsy. 2022 Accessed October 05, 2022 at: https://www.who.int/news-room/fact-sheets/detail/epilepsy
- 32 Niu L. AMPA receptor inhibitors for the treatment of neurological disorders. Future Med Chem 2014; 6: 849-852 DOI: 10.4155/fmc.14.48.
- 33 Hanada T, Yang H, Ido K, Laurenza A. AMPA receptor antagonists for the treatment of CNS disorders: Antiepileptics and beyond. Front Clin Drug Res – CNS Neurol Disord 2015; 3: 41-76 DOI: 10.2174/9781608059263114030005.
- 34 Guo C, Ma YY. Calcium permeable-AMPA receptors and excitotoxicity in neurological disorders. Front Neural Circuits 2021; 15: 1-14 DOI: 10.3389/fncir.2021.711564.
- 35 Jang YP, Kim SR, Choi YH, Kim J, Kim SG, Markelonis GJ, Oh TH, Kim YC. Arctigenin protects cultured cortical neurons from glutamate-induced neurodegeneration by binding to kainate receptor. J Neurosci Res 2002; 68: 233-240 DOI: 10.1002/jnr.10204.
- 36 Ichikawa K, Kinoshita T, Sankawa U, Nishibe S. The Ca2+ antagonist activity of lignans. Chem Pharm Bull (Tokyo) 1986; 34: 3514-3517 DOI: 10.1248/cpb.34.3514.
- 37 Koech PK, Boldizsár I, Dobolyi A, Varró P. Effects of dibenzylbutyrolactone lignans arctigenin and trachelogenin on the motility of isolated rat ileum. Toxicol Rep 2022; 9: 1222-1232 DOI: 10.1016/j.toxrep.2022.05.019.
- 38 Wei L, Xue Z, Lan B, Yuan S, Li Y, Guo C, Zhang R, Ding R, Shen H. Arctigenin exerts neuroprotective effect by ameliorating cortical activities in experimental autoimmune encephalomyelitis in vivo . Front Immunol 2021; 12: 1-13 DOI: 10.3389/fimmu.2021.691590.
- 39 Shepherd GM. The Synaptic Organization of the Brain. 5th Edition. New York: Oxford University Press; 1998
- 40 Xu XY, Wang DY, Li YP, Deyrup ST, Zhang HJ. Plant-Derived Lignans as Potential Antiviral Agents: A Systematic Review. Phytochem Rev 2022; 21: 239-289 DOI: 10.1007/s11101-021-09758-0.
- 41 Cui Q, Du R, Liu M, Rong L. Lignans and their derivatives from plants as antivirals. Molecules 2020; 25: 1-17 DOI: 10.3390/molecules25010183.
- 42 Temml V, Kuehnl S, Schuster D, Schwaiger S, Stuppner H, Fuchs D. Interaction of Carthamus tinctorius lignan arctigenin with the binding site of tryptophan-degrading enzyme indoleamine 2, 3-dioxygenase. FEBS Open Bio 2013; 3: 450-452 DOI: 10.1016/j.fob.2013.08.008.
- 43 Eich E, Pertz H, Kaloga M, Schulz J, Fesen MR, Mazumder A, Pommier Y. (−)-Arctigenin as a lead structure for inhibitors of human immunodeficiency virus type-1 integrase. J Med Chem 1996; 39: 86-95 DOI: 10.1021/jm950387u.
- 44 Saarinen NM, Penttinen PE, Smeds AI, Hurmerinta TT, Mäkelä SI. Structural determinants of plant lignans for growth of mammary tumors and hormonal responses in vivo. J Steroid Biochem Mol Biol 2005; 93: 209-219 DOI: 10.1016/j.jsbmb.2004.12.004.
- 45 Rečnik LM, Thatcher RJ, Mallah S, Butts CP, Collingridge GL, Molnár E, Jane DE, Willis CL. Synthesis and pharmacological characterisation of arctigenin analogues as antagonists of AMPA and kainate receptors. Org Biomol Chem 2021; 19: 9154-9162 DOI: 10.1039/D1OB01653A.
- 46 Harmatha J, Nawrot J. Insect feeding deterrent activity of lignans and related phenylpropanoids with a methylenedioxyphenyl (piperonyl) structure moiety. Entomol Exp Appl 2002; 104: 51-60 DOI: 10.1007/978-94-017-2776-1_6.
- 47 Szokol-Borsodi L, Sólyomváry A, Molnár-Perl I, Boldizsár I. Optimum yields of dibenzylbutyrolactone-type lignans from cynareae fruits, during their ripening, germination and enzymatic hydrolysis processes, determined by on-line chromatographic methods. Phytochem Anal 2012; 23: 598-603 DOI: 10.1002/pca.2360.