Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(13): 1616-1620
DOI: 10.1055/a-2006-4703
DOI: 10.1055/a-2006-4703
letter
Iodine-Catalyzed One-Pot Multicomponent Synthesis of Pyrrolo/indolo[1,2-a]quinoxalines Substituted with ortho-Carbonyl Alkyl Benzoates/Benzoic Acids via Spirocyclic Ring Opening
Abstract
An efficient iodine-catalyzed cascade coupling protocol was developed for the synthesis of tetracyclic and pentacyclic pyrrolo[1,2-a]quinoxaline and indolo[1,2-a]quinoxaline derivatives via the iodine-mediated oxidative Pictet–Spengler reaction of 2-(1H-pyrrol-1-yl)aniline or 2-(1H-indol-1-yl)aniline with ninhydrin followed by spirocyclic ring opening with alcohol/water. The target compounds were obtained in good-to-excellent yields with a broad substrate scope.
Key words
Pictet–Spengler reaction - spirocyclic ring opening - quinoxalines - cascade coupling - multicomponent synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2006-4703.
- Supporting Information
Publication History
Received: 05 December 2022
Accepted after revision: 03 January 2023
Accepted Manuscript online:
03 January 2023
Article published online:
31 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Guillon J, Mouray E, Moreau S, Mullie C, Forfar I, Desplat V, Belisle-Fabre S, Pinaud N, Ravanello F, Le-Naour A, Leger JM, Gosmann G, Jarry C, Deleris G, Sonnet P, Grellier P. Eur. J. Med. Chem. 2011; 46: 2310
- 1b Guillon J, Le Borgne M, Rimbault C, Moreau S, Savrimoutou S, Pinaud N, Baratin S, Marchivie M, Roche S, Bollacke A, Pecci A, Alvarez L, Desplat V, Jose J. Eur. J. Med. Chem. 2013; 65: 205
- 2a Desplat V, Geneste A, Begorre MA, Fabre SB, Brajot S, Massip S, Thiolat D, Mossalayi D, Jarry C, Guillon J. J. Enzyme Inhib. Med. Chem. 2008; 23: 648
- 2b Desplat V, Moreau S, Gay A, Fabre SB, Thiolat D, Massip S, Macky G, Godde F, Mossalayi D, Jarry C, Guillon J. J. Enzyme Inhib. Med. Chem. 2010; 25: 204
- 2c Guillon J, Grellier P, Labaied M, Sonnet P, Leger JM, Deprez-Poulain R, Forfar-Bares I, Dallemagne P, Lemaitre N, Pehourcq F, Rochette J, Sergheraert C, Jarry C. J. Med. Chem. 2004; 47; 1997
- 2d Maga G, Gemma S, Fattorusso C, Locatelli GA, Butini S, Persico M, Kukreja G, Romano MP, Chiasserini L, Savini L, Novellino E, Nacci V, Spadari S, Campiani G. Biochemistry 2005; 44: 9637
- 3a Tekuri C, Singh DK, Nath M. Dyes and Pigm. 2016; 132: 194
- 3b Carbas BB, Kivrak A, Zora M, Onal AM. Electroanal. Chem. 2012; 677–680: 9
- 3c Carbas BB, Kivrak A, Zora M, Onal AM. React. Funct. Polym. 2011; 71: 579
- 4a Pardeshi SD, Patil BN, Patil P, Chaskar AC. Tetrahedron Lett. 2019; 60: 151250
- 4b Wang X, Liu H, Xie C, Zhou F, Ma C. New J. Chem. 2020; 44: 2465
- 4c Patil BN, Lade JJ, Pardeshi SD, Patil P, Chaskar AC. ChemistrySelect 2019; 4: 11362
- 4d Ni J, Jiang Y, Qi Z, Yan R. Chem. Asian J. 2019; 14: 2898
- 5a Huo HR, Tang XY, Gong YF. Synthesis 2018; 50: 2727
- 5b Liu H, Zhou F, Luo W, Chen Y, Zhang C, Ma C. Org. Biomol. Chem. 2017; 15: 7157
- 5c Lade JJ, Patil BN, Vhatkar MV, Vadagaonkar KS, Chaskar AC. Asian J. Org. Chem. 2017; 6: 1579
- 5d Dai C, Deng S, Zhu Q, Tang X. RSC Adv. 2017; 7: 44132
- 5e An Z, Zhao L, Wu M, Ni J, Qi Z, Yu G, Yan R. Chem. Commun. 2017; 53: 11572
- 6a Kamal A, Babu KS, Kovvuri J, Manasa V, Ravikumar A, Alari A. Tetrahedron Lett. 2015; 56: 7012
- 6b Zhang Z, Xie C, Tan X, Song G, Wen L, Gao H, Ma C. Org. Chem. Front. 2015; 2: 942
- 6c Preetam A, Nath M. RSC Adv. 2015; 5: 21843
- 6d Allan PN. M, Ostrowska MI, Patel B. Synlett 2019; 30: 2148
- 6e Verma AK, Jha RR, Sankar VK, Aggarwal T, Singh RP, Chandra R. Eur. J. Org. Chem. 2011; 2011: 6998
- 7a Yi CS, Yun SY. J. Am. Chem. Soc. 2005; 127: 17000
- 7b Li J, Zhang J, Yang H, Gao Z, Jiang G. J. Org. Chem. 2017; 82: 765
- 7c Rubio-Presa R, Pedrosa MA, Fernández-Rodríguez RM. A, Arnáiz FJ, Sanz R. Org. Lett. 2017; 19: 5470
- 7d Uraguchi D, Sasaki H, Kimura Y, Ito T, Ooi T. J. Am. Chem. Soc. 2018; 140: 2765
- 8a Davies J, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2017; 56: 13361
- 8b Xie C, Feng L, Li W, Ma X, Ma X, Liu Y, Ma C. Org. Biomol. Chem. 2016; 14: 8529
- 8c Cai Y, Jalan A, Kubosumi AR, Castle SL. Org. Lett. 2015; 17: 488
- 8d Kulinkovich OG. Chem. Rev. 2003; 103: 2597
- 8e Seiser T, Saget T, Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740
- 8f Marek I, Masarwa A, Delaye PO, Leibeling M. Angew. Chem. Int. Ed. 2015; 54: 414
- 8g Yao S, Zhang K, Zhou QQ, Zhao Y, Shi DQ, Xiao W. Chem. Commun. 2018; 54: 8096
- 8h Davies J, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2017; 56: 13361
- 8i Jiang H, Studer A. Angew. Chem. Int. Ed. 2017; 56: 12273
- 9a Madhubabu MV, Shankar R, More SS, Basaveswara Rao MV, Syam Kumar UK, Raghunadh A. RSC Adv. 2016; 6, 36599
- 9b Raghavendra RK, Ramamohan M, Raghunadh A, Suresh Babu M, Praveen Kumar S, Kalita D, Laxminarayana E, Prasad B, Pal M. RSC Adv. 2015; 5: 61575
- 9c Murthy VN, Nikumbh SP, Praveen Kumar S, Vaikunta Rao L, Raghunadh A. Tetrahedron Lett. 2015; 56: 5767
- 9d Murthy VN, Nikumbh SP, Praveen Kumar S, Chiranjeevi Y, Vaikunta Rao L, Raghunadh A. Synlett 2016; 27: 2362
- 9e Raghunadh A, Krishnaji T, Suresh Babu M, Murthy VN, Vaikunta Rao L, Syam Kumar UK. SynOpen 2020; 4, 55
- 10a Madhava Reddy L, Veerabadra Reddy V, Chandra Shekar P, Vallabhareddy S, Krishna Reddy C, Subba Reddy BV. ChemistrySelect 2018; 3: 9881
- 10b Mandal S, Pramanik A. J. Org. Chem. 2021; 86: 5047
- 11 General procedure for the synthesis of alkyl 2-(pyrrolo/indolo[1,2-a]quinoxaline-4/6 -carbonyl)benzoate derivatives (11/12): To a stirred solution of 1-(2-aminophenyl)pyrrole (3.16 mmol, 1.0 equiv) (7) or 2-(1H-indol-1-yl)aniline (3.16 mmol, 1.0 equiv) (9) in an alcohol (10 mL) was added ninhydrin (3.32 mmol, 1.05 equiv) (8) followed by iodine (10 mol %) at room temperature. The reaction mixture was heated under air to the reflux temperature and then stirred for 5–8 h. After completion of the reaction, the reaction mixture was cooled to room temperature and excess iodine was quenched with saturated aqueous Na2S2O3 solution. The product was extracted with ethyl acetate, and the organic layer was washed with water, dried over anhydrous Na2SO4, and filtered. The solvent was evaporated under vacuum to obtain the crude product, which was further purified by silica gel (60–120 mesh) column chromatography by using a 10–30% ethyl acetate in hexane solvent system to afford the desired compounds. Compound 11b: Yellow solid; yield: 90%; mp 143–145 °C; 1H NMR (400 MHz, CDCl3): δ = 8.01–8.00 (m, 2 H), 7.93–7.92 (m, 1 H), 7.83–7.81 (m, 2 H), 7.66–7.57 (m, 4 H), 7.40–7.36 (m, 1 H), 7.04–7.03 (m, 1 H), 3.84 (q, J = 7.2 Hz, 2 H), 0.85 (t, J = 7.2, 6.8 Hz, 3 H); 13C NMR (100 MHz, CDCl3): δ = 195.8, 166.6, 147.9, 140.2, 134.5, 132.0, 131.5, 131.4, 130.0, 129.9, 128.8 (2 C), 127.9, 125.1, 123.5, 115.3, 114.2, 113.6, 109.8, 61.2, 13.5; HRMS (ESI): m/z [M + H]+ calcd for C21H17N2O3: 345.1239; found: 345.1217. Compound 12e: Dark brown solid; yield: 95%; mp 137–139 °C; 1H NMR (400 MHz, CDCl3): δ = 8.50–8.44 (m, 2 H), 8.19 (s, 1 H), 8.07 (d, J = 7.6 Hz, 1 H), 8.03 (d, J = 7.6 Hz, 1 H), 7.82–7.79 (m, 1 H), 7.70–7.57 (m, 5 H), 7.50–7.46 (m, 1 H), 7.36–7.32 (m, 1 H), 3.84 (t, J = 6.8 Hz, 2 H), 1.26–1.19 (m, 2 H), 1.11–1.03 (m, 2 H), 0.58 (t, J = 7.2 Hz, 3 H); 13C NMR (100 MHz, CDCl3): δ = 195.6, 166.6, 149.7, 140.5, 132.1, 131.9, 131.2, 130.8, 130.1, 130.0, 128.9, 128.8, 124.5, 123.9, 123.4, 122.8, 114.6, 114.3, 103.5, 65.2, 30.2, 18.8, 13.3; HRMS (ESI): m/z [M + H]+ calcd for C27H23N2O3: 423.1709; found: 423.1689.
- 12 General procedure for the synthesis of 2-(pyrrolo/indolo[1,2-a]quinoxaline-4/6-carbonyl)benzoic acid derivatives (14/15): To a stirred solution of 1-(2-aminophenyl)pyrrole (3.16 mmol, 1.0 equiv) (7) or 2-(1H-indol-1-yl)aniline (3.16 mmol, 1.0 equiv) (9) in water (10 mL) was added ninhydrin (3.32 mmol, 1.05 equiv) (8) followed by iodine (10 mol%) at room temperature. The reaction mixture was heated under air to the reflux temperature (100 °C) and then stirred for 4–8 h. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was cooled to room temperature and excess iodine was quenched with saturated aqueous Na2S2O3 solution. The product was extracted with ethyl acetate, and the organic layer was washed with water, dried over anhydrous Na2SO4, and filtered. The solvent was evaporated under vacuum to obtain the crude product, which was further purified by silica gel (60–120 mesh) column chromatography by using a 20–30% ethyl acetate in hexane solvent system to afford the desired products (14a,b and 15a,b) in good yield and purity. Compound 14a: Yellow solid; yield: 80%; mp 213–215 °C; 1H NMR (400 MHz, DMSO-d 6): δ = 13.04 (br s, 1 H), 8.60–8.59 (m, 1 H), 8.36 (d, J = 8.0 Hz, 1 H), 7.95–7.92 (m, 1 H), 7.76–7.64 (m, 4 H), 7.61–7.60 (m, 2 H), 7.49–7.43 (m, 1 H), 7.11–7.09 (m, 1 H); 13C NMR (100 MHz, DMSO-d 6): δ = 195.8, 167.6, 147.9, 140.6, 133.8, 132.1, 131.7, 130.5, 130.3, 130.2, 128.6 (2 C), 127.7, 125.7, 122.8, 116.1, 115.2, 114.9, 109.2; IR (KBr): 3748, 3133, 2920, 1770, 1697, 1675, 1477, 1377, 1276, 1146, 1071, 898, 738, 709, 666 cm–1; HRMS (ESI): m/z [M + H]+ calcd for C19H13N2O3: 317.0926; found: 317.0905.